Solveeit Logo

Question

Physics Question on Electrostatic potential

Charges 2q,q2q,\, -q and q-q lie at the vertices of a triangle. The value of EE and Vat the centroid of equilateral triangle will be

A

E0E\ne 0 and V0V\ne 0

B

E=0E=0 and V=0V=0

C

E0E\ne 0 and V=0V=0

D

E=0E=0 and V0V\ne 0

Answer

E0E\ne 0 and V=0V=0

Explanation

Solution

The potential due to charge qq at a distance rr is given by
V=14πε0qrV=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
Since, potential is a scalar quantity, it can be added to find the sum due to individual charges.
ΣV=VA+VB+VCVA\Sigma V=V_{A}+V_{B}+V_{C} V_{A}
=14πε02qx=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q}{x}
VB=14πε0qxV_{B}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{x}
VC=14πε0qxV_{C}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{x}
V=14πε0(2qxqxqx)=0\therefore V =\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{2 q}{x}-\frac{q}{x}-\frac{q}{x}\right)=0
Electric field is a vector quantity, hence component along ODOD is taken
E=14πε0(2qx2+2qx2cosθ)0E=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{2 q}{x^{2}}+\frac{2 q}{x^{2}} \cos \theta\right) \neq 0