Solveeit Logo

Question

Physics Question on Electric charges and fields

Charge q2q_2 of mass m revolves around a stationary charge q1q_1 in a circular orbit of radius r. The orbital periodic time of q2q_2 would be

A

[4π2mr3kq1q2]1/2 \bigg [ \frac{ 4 \pi^2 \, mr^3 }{ kq_1 \, q_2 } \bigg]^{ 1/2}

B

[kq1q24π2mr3]1/2 \bigg [ \frac{ kq_1 \, q_2 }{ 4 \pi^2 \, mr^3 } \bigg]^{ 1/2}

C

[4π2mr4kq1q2]1/2 \bigg [ \frac{ 4 \pi^2 \, mr^4 }{ kq_1 \, q_2 } \bigg]^{ 1/2}

D

[4π2mr2kq1q2]1/2 \bigg [ \frac{ 4 \pi^2 \, mr^2 }{ kq_1 \, q_2 } \bigg]^{ 1/2}

Answer

[4π2mr3kq1q2]1/2 \bigg [ \frac{ 4 \pi^2 \, mr^3 }{ kq_1 \, q_2 } \bigg]^{ 1/2}

Explanation

Solution

14πε0q1q2r2=mrω2=4π2mrT2\frac{ 1}{ 4 \pi \varepsilon_0} \frac{ q_1 \, q_2 }{ r^2 } = mr \omega^2 = \frac{ 4 \pi^2 mr }{ T^2}
T2=(4πε0)r2(4π2mr)q1q2T^2 = \frac{ ( 4 \pi \varepsilon_0 ) r^2 \, ( 4 \pi^2 \, mr )}{ q_1 \, q_2 }
[4π2mr3kq1q2]1/2\bigg [ \frac{ 4 \pi^2 \, mr^3 }{ kq_1 \, q_2 } \bigg]^{ 1/2}