Solveeit Logo

Question

Question: Charge \(​ { q }_{ 2 }\) of mass m revolves around a stationary charge \(​ { q }_{ 1 }\) ​ in a circ...

Charge q2​ { q }_{ 2 } of mass m revolves around a stationary charge q1​ { q }_{ 1 } ​ in a circular orbit of radius r. The orbital periodic time of q2​ { q }_{ 2 } would be.
A.(4π2mr3kq1q2)12A. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }
B.(kq1q24π2mr3)12B. { \left( \dfrac { k{ q }_{ 1 }{ q }_{ 2 } }{ 4{ \pi }^{ 2 }m{ r }^{ 3 } } \right) }^{ \dfrac { 1 }{ 2 } }
C.(4π2mr4kq1q2)12C. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 4 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }
D.(4π2mr2kq1q2)12D. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 2 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }

Explanation

Solution

Force acting on the particle can be balanced by equating Electrostatic force and centripetal force on the charge. By equating you get the value for v. Use the relation between velocity, displacement and time. Substitute the value of calculated velocity and displacement and find time.

Formula used:
Fe=14πϵ0q1q2r2{ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }
Fc=mv2r{ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }

Complete step by step answer:
Let the charge be moving with velocity ‘v’.
The total path for revolution (x) is 2πr2\pi r. …(1)
Electrostatic force is given by,
Fe=14πϵ0q1q2r2{ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } …(2)
Centripetal Force is given by,
Fc=mv2r{ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r } …(3)
For stable orbit, these forces should be equal.
Fe=Fc\therefore { F }_{ e }={ F }_{ c }
By equating equation.(1) and equation.(2) we get,
14πϵ0q1q2r2=mv2r\dfrac { 1 }{ 4\pi \epsilon _{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } =\dfrac { m{ v }^{ 2 } }{ r }
v=(q1q24mπϵ0r)12\therefore v = { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } } …(4)
Now, we know v=xtv= \dfrac { x }{ t } …(5)
By substituting equation.(1) and equation.(2) in equation.(5) we get,
(q1q24mπϵ0r)12=2πrt{ \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }= \dfrac { 2\pi r }{ t }
t=(16π3ϵ0mr3q1q2)12\therefore t= { \left( \dfrac { 16{ \pi }^{ 3 }{ \epsilon }_{ 0 }m{ r }^{ 3 } }{ { q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }
But 14πϵ0=k\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } = k
t=(4π2mr3kq1q2)12\therefore t= { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ { kq }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }
Therefore, the orbital periodic time of q2​ { q }_{ 2 } would be (4π2mr3kq1q2)12 { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }

Hence, the correct answer is option A i.e. (4π2mr3kq1q2)12{ \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }.

Note:
There is an alternate method to solve this problem. In alternate method, you can take centripetal force as, Fc=mrω2{ F }_{ c }= mr{ \omega }^{ 2 }
But, ω=2πT\omega =\dfrac { 2\pi }{ T }
where, T: Time Period
Fc=4mrπ2T2\therefore { F }_{ c }= \dfrac { 4mr{ \pi }^{ 2 } }{ { T }^{ 2 } }
Now you can equate the Electrostatic Force and Centripetal Force and calculate T.
Thus, you can calculate orbital time period using this method.