Solveeit Logo

Question

Physics Question on Electric charges and fields

Charge is distributed within a sphere of radius RR with a volume charge density p(r)=Ar2e2r/ap (r) = \frac{A}{r^2} e^{-2r/a} where AA and aa are constants. If QQ is the total charge of this charge distribution, the radius RR is :

A

a2log(1Q2πaA)\frac{a}{2} \log\left(1- \frac{Q}{2\pi aA}\right)

B

alog(1Q2πaA)a \log\left(1- \frac{Q}{2 \pi aA}\right)

C

alog(11Q2πaA)a \log\left(\frac{1}{1- \frac{Q}{2\pi aA}}\right)

D

a2log(11Q2πaA)\frac{a}{2} \log\left( \frac{1}{1- \frac{Q}{2\pi aA}}\right)

Answer

a2log(11Q2πaA)\frac{a}{2} \log\left( \frac{1}{1- \frac{Q}{2\pi aA}}\right)

Explanation

Solution

The correct answer is (D) : a2log(11Q2πaA)\frac{a}{2} \log\left( \frac{1}{1- \frac{Q}{2\pi aA}}\right)
Q=ρdvQ = \int \rho dv
=0RAr2e2r/a(4πr2dr)= \int^{R}_{0} \frac{A}{r^{2}} e^{-2r/a} \left(4\pi r^{2} dr \right)
=0RAr2e2r/a(4πr2dr)= \int^{R}_{0} \frac{A}{r^{2}} e^{-2r/a} \left(4 \pi r^{2} dr\right)
=4πA0Re2r/adr= 4 \pi A \int^{R}_{0} e^{-2r/a} dr
=4πA(e2r/a2a)0R= 4\pi A \left( \frac{e^{-2r/a}}{- \frac{2}{a}}\right) ^{R}_{0}
=4πA(a2)(e2R/a1)= 4\pi A \left(- \frac{a}{2}\right) \left(e^{-2 R/a} -1\right)
Q=2πaA(1e2R/a)Q = 2 \pi aA\left(1 - e^{-2R/a} \right)
R=a2log(11Q2πaA)R = \frac{a}{2} \log \left(\frac{1}{1- \frac{Q}{2\pi aA}}\right)