Question
Question: Characteristic equation of the matrix \(A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & - 3 \\ - 2 & - 4 &...
Characteristic equation of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \ 1 & 3 & - 3 \
- 2 & - 4 & - 4 \end{bmatrix}$
A
A3−20A+8I
B
A3+20A+8I
C
A3−80A+20I
D
None of these
Answer
A3−20A+8I
Explanation
Solution
The characteristic equation is ∣A−λI∣=0.
So, $\left| \begin{matrix} 1 - \lambda & 1 & 3 \ 1 & 3 - \lambda & - 3 \
- 2 & - 4 & - 4 - \lambda \end{matrix} \right| = 0i.e.\lambda^{3} - 20\lambda + 8 = 0$
By cayley-Hamilton theorem , A3−20A+8I=0