Solveeit Logo

Question

Question: Characteristic equation of the matrix \(A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & - 3 \\ - 2 & - 4 &...

Characteristic equation of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \ 1 & 3 & - 3 \

  • 2 & - 4 & - 4 \end{bmatrix}$
A

A320A+8IA^{3} - 20A + 8I

B

A3+20A+8IA^{3} + 20A + 8I

C

A380A+20IA^{3} - 80A + 20I

D

None of these

Answer

A320A+8IA^{3} - 20A + 8I

Explanation

Solution

The characteristic equation is AλI=0|A - \lambda I| = 0.

So, $\left| \begin{matrix} 1 - \lambda & 1 & 3 \ 1 & 3 - \lambda & - 3 \

  • 2 & - 4 & - 4 - \lambda \end{matrix} \right| = 0i.e.i.e.\lambda^{3} - 20\lambda + 8 = 0$

By cayley-Hamilton theorem , A320A+8I=0A^{3} - 20A + 8I = 0