Question
Question: If $\cos^{-1}x - \cos^{-1}\frac{y}{3}=\alpha$, where $-1\le x\le1$, $-3\le y\le3, x\le\frac{y}{3}$, ...
If cos−1x−cos−13y=α, where −1≤x≤1, −3≤y≤3,x≤3y, then for all x,y 9x2−6xycosα+y2 is equal to [2023]

A
sin2α
B
3sin2α
C
9sin2α
D
94sin2α
Answer
$9\sin^2\alpha
Explanation
Solution
Let
A=cos−1(x)andB=cos−1(3y).
Then,
A−B=α⇒A=α+B.
So,
x=cosA=cos(α+B)=cosαcosB−sinαsinB.
Since cosB=3y, we have:
x=3ycosα−sinαsinB.
Multiply by 3:
3x=ycosα−3sinαsinB.
Now, the expression to evaluate is:
9x2−6xycosα+y2.
Notice that
(3x−ycosα)2=9x2−6xycosα+y2cos2α.
Thus,
9x2−6xycosα+y2=(3x−ycosα)2+y2sin2α.
Substitute for 3x−ycosα:
3x−ycosα=−3sinαsinB⇒(3x−ycosα)2=9sin2αsin2B.
Also, since cosB=3y, we have y=3cosB and so:
y2sin2α=9cos2Bsin2α.
Therefore,
9x2−6xycosα+y2=9sin2αsin2B+9sin2αcos2B=9sin2α(sin2B+cos2B).
Since sin2B+cos2B=1, we obtain:
9x2−6xycosα+y2=9sin2α.