Solveeit Logo

Question

Question: If $\cos^{-1}x - \cos^{-1}\frac{y}{3}=\alpha$, where $-1\le x\le1$, $-3\le y\le3, x\le\frac{y}{3}$, ...

If cos1xcos1y3=α\cos^{-1}x - \cos^{-1}\frac{y}{3}=\alpha, where 1x1-1\le x\le1, 3y3,xy3-3\le y\le3, x\le\frac{y}{3}, then for all x,yx,y 9x26xycosα+y29x^2-6xy\cos\alpha+y^2 is equal to [2023]

A

sin2α\sin^2\alpha

B

3sin2α3\sin^2\alpha

C

9sin2α9\sin^2\alpha

D

49sin2α\frac{4}{9}\sin^2\alpha

Answer

$9\sin^2\alpha

Explanation

Solution

Let

A=cos1(x)andB=cos1(y3)A = \cos^{-1}(x) \quad \text{and} \quad B = \cos^{-1}\left(\frac{y}{3}\right).

Then,

AB=αA=α+BA - B = \alpha \quad \Rightarrow \quad A = \alpha + B.

So,

x=cosA=cos(α+B)=cosαcosBsinαsinBx = \cos A = \cos(\alpha+B) = \cos\alpha \cos B - \sin\alpha \sin B.

Since cosB=y3\cos B = \frac{y}{3}, we have:

x=ycosα3sinαsinBx = \frac{y\cos\alpha}{3} - \sin\alpha \sin B.

Multiply by 3:

3x=ycosα3sinαsinB3x = y\cos\alpha - 3\sin\alpha \sin B.

Now, the expression to evaluate is:

9x26xycosα+y29x^2 - 6xy\cos\alpha + y^2.

Notice that

(3xycosα)2=9x26xycosα+y2cos2α(3x - y\cos\alpha)^2 = 9x^2 - 6xy\cos\alpha + y^2\cos^2\alpha.

Thus,

9x26xycosα+y2=(3xycosα)2+y2sin2α9x^2 - 6xy\cos\alpha + y^2 = (3x - y\cos\alpha)^2 + y^2\sin^2\alpha.

Substitute for 3xycosα3x - y\cos\alpha:

3xycosα=3sinαsinB(3xycosα)2=9sin2αsin2B3x - y\cos\alpha = -3\sin\alpha \sin B \quad \Rightarrow \quad (3x - y\cos\alpha)^2 = 9\sin^2\alpha \sin^2B.

Also, since cosB=y3\cos B=\frac{y}{3}, we have y=3cosBy = 3\cos B and so:

y2sin2α=9cos2Bsin2αy^2\sin^2\alpha = 9\cos^2B\sin^2\alpha.

Therefore,

9x26xycosα+y2=9sin2αsin2B+9sin2αcos2B=9sin2α(sin2B+cos2B)9x^2 - 6xy\cos\alpha + y^2 = 9\sin^2\alpha\sin^2B + 9\sin^2\alpha\cos^2B = 9\sin^2\alpha(\sin^2B+\cos^2B).

Since sin2B+cos2B=1\sin^2B+\cos^2B=1, we obtain:

9x26xycosα+y2=9sin2α9x^2 - 6xy\cos\alpha + y^2 = 9\sin^2\alpha.