Solveeit Logo

Question

Question: The correct increasing order of stability of the complexes based on $\Delta_o$ value is...

The correct increasing order of stability of the complexes based on Δo\Delta_o value is

A

I < II < III < IV

B

II < I < IV < III

C

I < IV < II < III

D

II < IV < I < III

Answer

II < I < IV < III

Explanation

Solution

The stability of coordination complexes is related to their Crystal Field Stabilization Energy (CFSE). A more negative CFSE value indicates greater stability. The CFSE for octahedral complexes is calculated using the formula: CFSE=(0.4nt+0.6ne)ΔoCFSE = (-0.4 n_t + 0.6 n_e) \Delta_o, where ntn_t is the number of electrons in t2gt_{2g} orbitals and nen_e is the number of electrons in ege_g orbitals.

I. [Mn(CN)6]3[Mn(CN)_6]^{3-}: Mn+33d4Mn^{+3} \rightarrow 3d^4. Low spin: t2g4eg0t_{2g}^4 e_g^0. CFSE = 4(0.4Δo)=1.6Δo4(-0.4 \Delta_o) = -1.6 \Delta_o. II. [Co(CN)6]4[Co(CN)_6]^{4-}: Co+23d7Co^{+2} \rightarrow 3d^7. High spin: t2g5eg2t_{2g}^5 e_g^2. CFSE = 5(0.4Δo)+2(0.6Δo)=2.0Δo+1.2Δo=0.8Δo5(-0.4 \Delta_o) + 2(0.6 \Delta_o) = -2.0 \Delta_o + 1.2 \Delta_o = -0.8 \Delta_o. III. [Fe(CN)6]4[Fe(CN)_6]^{4-}: Fe+23d6Fe^{+2} \rightarrow 3d^6. Low spin: t2g6eg0t_{2g}^6 e_g^0. CFSE = 6(0.4Δo)=2.4Δo6(-0.4 \Delta_o) = -2.4 \Delta_o. IV. [Fe(CN)6]3[Fe(CN)_6]^{3-}: Fe+33d5Fe^{+3} \rightarrow 3d^5. Low spin: t2g5eg0t_{2g}^5 e_g^0. CFSE = 5(0.4Δo)=2.0Δo5(-0.4 \Delta_o) = -2.0 \Delta_o.

Comparing the CFSE values: I: 1.6Δo-1.6 \Delta_o II: 0.8Δo-0.8 \Delta_o III: 2.4Δo-2.4 \Delta_o IV: 2.0Δo-2.0 \Delta_o

The increasing order of stability (from least negative to most negative CFSE) is: 0.8>1.6>2.0>2.4-0.8 > -1.6 > -2.0 > -2.4 Thus, the order is II < I < IV < III.