Solveeit Logo

Question

Question: The minimum value of $2 \sin^2 \theta + 3 \cos^2 \theta$ is...

The minimum value of 2sin2θ+3cos2θ2 \sin^2 \theta + 3 \cos^2 \theta is

A

3

B

0

C

1

D

2

Answer

2

Explanation

Solution

The expression 2sin2θ+3cos2θ2 \sin^2 \theta + 3 \cos^2 \theta can be rewritten as 2sin2θ+3(1sin2θ)=2sin2θ+33sin2θ=3sin2θ2 \sin^2 \theta + 3 (1 - \sin^2 \theta) = 2 \sin^2 \theta + 3 - 3 \sin^2 \theta = 3 - \sin^2 \theta.

Since 0sin2θ10 \le \sin^2 \theta \le 1, to find the minimum value of 3sin2θ3 - \sin^2 \theta, we must subtract the maximum possible value of sin2θ\sin^2 \theta, which is 1.

So, the minimum value is 31=23 - 1 = 2.