Solveeit Logo

Question

Question: Capacitance of a capacitor becomes 7/6 times its original value if a dielectric slab of thickness t ...

Capacitance of a capacitor becomes 7/6 times its original value if a dielectric slab of thickness t = (2/3)d is introduced between plates. d is the separation between plates. The dielectric constant of dielectric slab is-

A

1411\frac{14}{11}

B

1114\frac{11}{14}

C

711\frac{7}{11}

D

117\frac{11}{7}

Answer

1411\frac{14}{11}

Explanation

Solution

C = ε0 A d\frac { \varepsilon _ { 0 } \mathrm {~A} } { \mathrm {~d} } Ž C' =

Ž C' = Ž 76\frac { 7 } { 6 } C = ε0 Ad3+2 d3k\frac { \varepsilon _ { 0 } \mathrm {~A} } { \frac { \mathrm { d } } { 3 } + \frac { 2 \mathrm {~d} } { 3 \mathrm { k } } }

Ž 76\frac { 7 } { 6 } C = ε0 A d(3kk+2)\frac { \varepsilon _ { 0 } \mathrm {~A} } { \mathrm {~d} } \left( \frac { 3 \mathrm { k } } { \mathrm { k } + 2 } \right) Ž 76\frac { 7 } { 6 } C = C (3kk+2)\left( \frac { 3 \mathrm { k } } { \mathrm { k } + 2 } \right)

7k + 14 = 18 k Ž k = 1411\frac { 14 } { 11 }