Solveeit Logo

Question

Question: Can you solve this question using series? (Do not involve Lhospital rule anywhere) $\Rightarrow \li...

Can you solve this question using series? (Do not involve Lhospital rule anywhere)

limx18(cos(ln(2cos6πx)))1(arctanx18π4)2\Rightarrow \lim_{x \to 18} \left(\cos\left(\ln\left(2\cos\frac{6\pi}{x}\right)\right)\right)^{\frac{1}{\left(\arctan\frac{x}{18} - \frac{\pi}{4}\right)^2}}

Answer

e2π23e^{-\frac{2\pi^2}{3}}

Explanation

Solution

The limit is of the form 11^\infty, which is converted to elimxag(x)(f(x)1)e^{\lim_{x \to a} g(x)(f(x)-1)}. Let x=18+yx = 18+y, so y0y \to 0.

  1. Expand (arctanx18π4)2\left(\arctan\frac{x}{18} - \frac{\pi}{4}\right)^2 using Taylor series for arctan(1+u)\arctan(1+u) around u=0u=0. This gives y21296(1y18+O(y2))\frac{y^2}{1296}\left(1 - \frac{y}{18} + O(y^2)\right).

  2. Expand cos(ln(2cos6πx))1\cos\left(\ln\left(2\cos\frac{6\pi}{x}\right)\right) - 1.

    a. Expand 6πx\frac{6\pi}{x} as π3+δ\frac{\pi}{3} + \delta, where δ=πy54+O(y2)\delta = -\frac{\pi y}{54} + O(y^2). b. Expand 2cos(π3+δ)2\cos\left(\frac{\pi}{3}+\delta\right) using cos(π3+δ)=12cosδ32sinδ\cos(\frac{\pi}{3}+\delta) = \frac{1}{2}\cos\delta - \frac{\sqrt{3}}{2}\sin\delta and series for sinδ,cosδ\sin\delta, \cos\delta. This gives 13δδ22+O(δ3)1 - \sqrt{3}\delta - \frac{\delta^2}{2} + O(\delta^3). c. Expand ln(2cost)\ln(2\cos t) using ln(1+M)=MM22+O(M3)\ln(1+M) = M - \frac{M^2}{2} + O(M^3). This gives 3δ2δ2+O(δ3)-\sqrt{3}\delta - 2\delta^2 + O(\delta^3). d. Substitute δ\delta in terms of yy into ln(2cost)\ln(2\cos t). This gives 3πy54+O(y2)\frac{\sqrt{3}\pi y}{54} + O(y^2). e. Expand cos(Z)1\cos(Z)-1 using cosZ1=Z22+O(Z4)\cos Z - 1 = -\frac{Z^2}{2} + O(Z^4), where Z=ln(2cost)Z = \ln(2\cos t). This gives π2y21944+O(y3)-\frac{\pi^2 y^2}{1944} + O(y^3).

  3. Multiply the series expansions of g(x)g(x) and (f(x)1)(f(x)-1) and take the limit as y0y \to 0.

The limit of the exponent simplifies to 2π23-\frac{2\pi^2}{3}. The final answer is e2π23e^{-\frac{2\pi^2}{3}}.