Solveeit Logo

Question

Question: Can you simplify \[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right)...

Can you simplify cos(x) cos(2x) cos(4x) cos(8x) .. (cos 2nx)\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right) ?

Explanation

Solution

In this question, we need to simplify the given expression. Sine, cosine and tangent are known as the basic trigonometric function. In order to simplify the given expression ,we need to use the concepts of trigonometric identities. Cosine function is nothing but a ratio of the adjacent side of a right angle to the hypotenuse of the right angle. With the help of double angle identity,first , we need to find sin(16x)\sin (16x) then we need to find sin(8x)\sin (8x) . By proceeding this, we can easily simplify the given expression.
Double angle identity :
sin(2x) =2sin(x)cos(x)\sin (2x)\ = 2\sin (x)\cos (x)

Complete step-by-step solution:
Given,
cos(x) cos(2x) cos(4x) cos(8x) .. (cos 2nx)\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right)
Let us consider the given expression as f(x)f(x),
f(x) =cos(x) cos(2x) cos(4x) cos(8x) .. (cos 2nx)f(x)\ = \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ ({cos\ }2^{n}x)
By using double angle identity, sin(2x) =2sin(x)cos(x)\sin (2x)\ = 2\sin (x)\cos (x)
When
sin(16x) =2sin(8x) cos(8x)\sin (16x)\ = 2\sin (8x)\ \cos (8x)
Now we need to find sin(8x)\sin (8x) ,
We get
= 2×2sin(4x)cos(4x)cos(8x)= \ 2 \times 2\sin \left( 4x \right)\cos\left( 4x \right)\cos\left( 8x \right)
Now we can find sin(4x)\sin (4x),
We get,
= 2×2×2sin(2x)cos(2x)cos(4x)cos(8x)= \ 2 \times 2 \times 2\sin \left( 2x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)
Then finally we need to find sin(2x)\sin (2x) ,
= 2×2×2×2sin(x) cos(x) cos(2x) cos(4x) cos(8x)= \ 2 \times 2 \times 2 \times 2\sin (x)\ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)
On simplifying,
We get,
sin(16x)=24sin(x)cos(x)cos(2x)cos(4x)cos(8x)\sin \left( 16x \right) = 2^{4}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)
= cos(x) cos(2x) cos(4x) cos(8x)=sin(16x)24sin(x)= \ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x) = \dfrac{\sin\left( 16x \right)}{2^{4}\sin\left( x \right)}
If we generalize the double angle identity ,
We get,
sin(2n+1x)=2sin(2nx)cos(2nx)sin\left( 2^{n + 1}x \right) = 2sin\left( 2^{n}x \right)\cos\left( 2^{n}x \right)
Now we need to find sin(2nx)\sin\left( 2^{n}x \right) ,
= 2×2sin(2n1x)cos(2n1x)cos(2nx)= \ 2 \times 2sin\left( 2^{n – 1}x \right)\cos\left( 2^{n – 1}x \right)\cos\left( 2^{n}x \right)
On proceeding this,
.
.
.
We get,
= 2ncos(2nx)cos(2n1)cos(4x)cos(2x)sin(2x)= \ 2^{n}\cos\left( 2^{n}x \right)cos(2^{n – 1})\cos\left( 4x \right)\cos\left( 2x \right)\sin\left( 2x \right)
Now we can find sin(2x)sin(2x) ,
= 2n+1cos(2nx)cos(2n1) cos(4x)cos(2x)cos(x)sin(x)= \ 2^{n + 1}\cos\left( 2^{n}x \right)cos(2^{n – 1})\ldots\ cos\left( 4x \right)\cos\left( 2x \right)\cos\left( x \right)\sin\left( x \right)
On solving
We get,
 2n+1sin(x)cos(x)cos(2x)cos(4x)cos(8x)..(cos 2nx)\Rightarrow \ 2^{n + 1}\sin \left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)
Thus,
sin(2n+1x)= 2n+1sin(x)cos(x)cos(2x)cos(4x)cos(8x)..(cos 2nx)\sin \left( 2^{n + 1}x \right) = \ 2^{n + 1}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)
 cos(x)cos(2x)cos(4x)cos(8x)..(cos 2nx)=sin(2n+1x)2n+1sin(x)\Rightarrow \ cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right) = \dfrac{\sin\left( 2^{n + 1}x \right)}{2^{n + 1}\sin\left( x \right)}
Thus we get cos(x) cos(2x) cos(4x) cos(8x) ..(cos 2nx)\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right) is equal to sin(2n+1x)2(n+1) sin(x)\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}
Final answer :
cos(x) cos(2x) cos(4x) cos(8x) ..(cos 2nx)\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right) is equal to sin(2n+1x)2(n+1) sin(x)\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}

Note: The concept used to simplify the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. Sine is nothing but it is defined as a ratio of the opposite side of a right angle to the hypotenuse of the right angle. The common technique used in this problem is the substitution rule with the use of trigonometric identities such as double angle identity.