Solveeit Logo

Question

Question: Can someone tell me how to prove \[\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}...

Can someone tell me how to prove sin78+cos132=(51)4\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}, in the easiest method.

Explanation

Solution

In order to prove the given question that is sin78+cos132=(51)4\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4} Split the angle of sine with the help of trigonometric properties of sine and cosine. Simply until you get sin18\sin {{18}^{\circ }}. Now to find the value of sin18\sin {{18}^{\circ }}. Assume x=18x={{18}^{\circ }} and then 5x=905x={{90}^{\circ }}. With the help of cosine properties expand cos(5x2x)\cos \left( 5x-2x \right) and use the identity that cos3x=4cos3x3cosx=sin2x\cos 3x=4{{\cos }^{3}}x-3\cos x=\sin 2x. After that simplify it further and solve the quadratic equation 4sin2x+2sinx1=04{{\sin }^{2}}x+2\sin x-1=0 with the formula x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} to find the value of sinx\sin xwhich is nothing but sin18\sin {{18}^{\circ }}.

Complete step by step solution:
Given equation which needs to be proves is as follows:
sin78+cos132=(51)4\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}
Consider the Left-Hand-Side of the equation and solve it further:
LHS =sin78+cos132=\sin {{78}^{\circ }}+\cos {{132}^{\circ }}
We can write 78=9012{{78}^{\circ }}={{90}^{\circ }}-{{12}^{\circ }}, substituting this angle of sine in the above equation we get:
sin(9012)+cos132\Rightarrow \sin \left( {{90}^{\circ }}-{{12}^{\circ }} \right)+\cos {{132}^{\circ }}
Apply the trigonometric property of sine and cosine that is sin(90θ)=cosθ\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta in the above equation we get:
cos12+cos132\Rightarrow \cos {{12}^{\circ }}+\cos {{132}^{\circ }}
Again, apply another trigonometric property of sine and cosine that is cosAcosB=2cos(A+B2)cos(AB2)\cos A-\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) in the above equation we get:
2cos72cos60\Rightarrow 2\cos {{72}^{\circ }}\cos {{60}^{\circ }}
We can write 72=9018{{72}^{\circ }}={{90}^{\circ }}-{{18}^{\circ }}, substituting this angle of sine in the above equation we get:
2cos(9018)12\Rightarrow 2\cos ({{90}^{\circ }}-{{18}^{\circ }})\cdot \dfrac{1}{2}
Apply the trigonometric property of sine and cosine that is cos(90θ)=sinθ\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta in the above equation we get:
sin18\Rightarrow \sin {{18}^{\circ }}
To find the value of sin18\sin {{18}^{\circ }}. We will consider the following:
Let x=18x={{18}^{\circ }}
5x=90...(1)\Rightarrow 5x={{90}^{\circ }}...\left( 1 \right)
Now, we can write this in the following form:
cos3x=cos(5x2x)\Rightarrow \cos 3x=\cos \left( 5x-2x \right)
Substituting the equation (1)\left( 1 \right) in above equation we get:
cos3x=cos(902x)\Rightarrow \cos 3x=\cos \left( {{90}^{\circ }}-2x \right)
After this, use the identity that cos3x=4cos3x3cosx=sin2x\cos 3x=4{{\cos }^{3}}x-3\cos x=\sin 2x.
4cos3x3cosx=sin2x\Rightarrow 4{{\cos }^{3}}x-3\cos x=\sin 2x
4cos3x3cosx=2sinxcosx\Rightarrow 4{{\cos }^{3}}x-3\cos x=2\sin x\cos x
As we know that cosx0\cos x\ne 0 therefore we get
4cos2x3=2sinx\Rightarrow 4{{\cos }^{2}}x-3=2\sin x
Again, apply another trigonometric property of sine and cosine that is cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta in the above equation we get:
4(1sin2x)3=2sinx\Rightarrow 4\left( 1-{{\sin }^{2}}x \right)-3=2\sin x
After simplifying it further we get:
4sin2x+2sinx1=0\Rightarrow 4{{\sin }^{2}}x+2\sin x-1=0
Clearly you can see above equation is a quadratic equation, to solve this and find the value of sinx\sin x, we’ll use the formula x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} we get:
sinx=2+2244(1)24\Rightarrow \sin x=\dfrac{-2+\sqrt{{{2}^{2}}-4\cdot 4\cdot \left( -1 \right)}}{2\cdot 4}
sinx=2+2024\Rightarrow \sin x=\dfrac{-2+\sqrt{20}}{2\cdot 4}
sinx=2+2524\Rightarrow \sin x=\dfrac{-2+2\sqrt{5}}{2\cdot 4}
After simplifying it further we get:
sinx=514\Rightarrow \sin x=\dfrac{\sqrt{5}-1}{4}
As we took x=18x={{18}^{\circ }} initially therefore we get:
sin18=514...(2)\Rightarrow \sin {{18}^{\circ }}=\dfrac{\sqrt{5}-1}{4}...\left( 2 \right)
Which is equal to the RHS.
Therefore, sin78+cos132=(51)4\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}. Hence Proved.

Note:
There’s an alternative way to solve this question, which is as follows:
Consider the Left-Hand-Side of the equation that is:
LHS =sin78+cos132=\sin {{78}^{\circ }}+\cos {{132}^{\circ }}
We can write 132=90+42{{132}^{\circ }}={{90}^{\circ }}+{{42}^{\circ }}, substituting this angle of sine in the above equation we get:
sin78+cos(90+42)\Rightarrow \sin {{78}^{\circ }}+\cos \left( {{90}^{\circ }}+{{42}^{\circ }} \right)
Apply the trigonometric property of sine and cosine that is cos(90+θ)=sinθ\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta in the above equation we get:
sin78sin42\Rightarrow \sin {{78}^{\circ }}-\sin {{42}^{\circ }}
Again, apply another trigonometric property of sine and cosine that is sinAsinB=2cos(A+B2)sin(AB2)\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) in the above equation we get:
2cos(78+422)sin(78422)\Rightarrow 2\cos \left( \dfrac{{{78}^{\circ }}+{{42}^{\circ }}}{2} \right)\sin \left( \dfrac{78-42}{2} \right)
2cos(60)sin(18)\Rightarrow 2\cos \left( {{60}^{\circ }} \right)\sin \left( {{18}^{\circ }} \right)
From equation (2)\left( 2 \right) we get:
212514\Rightarrow 2\cdot \dfrac{1}{2}\cdot \dfrac{\sqrt{5}-1}{4}
514=\Rightarrow \dfrac{\sqrt{5}-1}{4}=RHS