Solveeit Logo

Question

Question: Calculate the wavelength of an electron moving with a velocity of \(2.05 \times {10^7}m{s^{ - 1}}\)....

Calculate the wavelength of an electron moving with a velocity of 2.05×107ms12.05 \times {10^7}m{s^{ - 1}}.

Explanation

Solution

The wavelength of the electron can be calculated using de Broglie’s equation λ=hmν\lambda = \dfrac{h}{{m\nu }}. This equation is applicable to any material particle.
Formula used:
λ=hmν\lambda = \dfrac{h}{{m\nu }}

Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
λ=hmν\lambda = \dfrac{h}{{m\nu }}
where, m=m = mass of the particle in kgkg
ν=\nu = velocity of the particle in ms1m{s^{ - 1}}
h=h = Planck’s constant =6.626×1034joulesec = 6.626 \times {10^{ - 34}}joule\,\sec \,or kgm2s1kg{m^2}{s^{ - 1}}
λ=\lambda = de Broglie’s wavelength in metres
It is given that ν=\nu = 2.05×107ms12.05 \times {10^7}m{s^{ - 1}}and we know that the mass of an electron (m)=(m) = 9.1×1031kg9.1 \times {10^{ - 31}}kg
Now, substituting the given values in the de Broglie’s equation, we get,
λ=hmν λ=6.626×1034kgm2s19.1×1031kg×2.05×107ms1 λ=3.552×1011m  \lambda = \dfrac{h}{{m\nu }} \\\ \Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\\ \Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\\
Hence, the wavelength of an electron moving with a velocity of 2.05×107ms12.05 \times {10^7}m{s^{ - 1}}is 3.552×1011m3.552 \times {10^{ - 11}}m.

Additional information:
The S.I unit of Planck’s constant (h)(h): is joulesecjoule\,\sec \,or kgm2s1kg{m^2}{s^{ - 1}}, where, 1Joule=1kgm2s21\,Joule = 1kg{m^2}{s^{ - 2}}.
E=hν h=Eν=Jsec1=Jsec  E = h\nu \\\ \Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\\
Now,λ=hmν or,h=λmν=(m)(kg)(ms1)=kgm2s1  As,E=hν Energy=(kgm2s1)(s1)=kgm2s2 so,1J=1kgm2s2  Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\\ or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\\ \\\ As,\,\,E = h\nu \, \\\ \Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\\ so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\\

Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.