Question
Question: Calculate the value of \(\underset{z\in S}{\mathop{\min }}\,\left| 1-3i-z \right|=\) such that \(\te...
Calculate the value of z∈Smin∣1−3i−z∣= such that S=S1∩S2∩S3 where {{\text{S}}_{1}}=\left\\{ z\in C:\left| z \right|<4 \right\\}, {{\text{S}}_{2}}=\left\\{ z\in C:\operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \right\\} and {{\text{S}}_{3}}=\left\\{ z\in C:\operatorname{Re}Z>0 \right\\} .
A. 22−3
B. 22+3
C. 23−3
D. 23+3
Solution
For this problem we need to calculate the minimum value of the given expression. In the problem we need to have the additional information that S=S1∩S2∩S3 where {{\text{S}}_{1}}=\left\\{ z\in C:\left| z \right|<4 \right\\}, {{\text{S}}_{2}}=\left\\{ z\in C:\operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \right\\} and {{\text{S}}_{3}}=\left\\{ z\in C:\operatorname{Re}Z>0 \right\\}. From this data we will calculate the range of the variable z by substituting the value z=x+iy. Now we will calculate the perpendicular distance from the point (−1,3) and the region to get the required result.
Complete step by step solution:
Given that, S=S1∩S2∩S3 where {{\text{S}}_{1}}=\left\\{ z\in C:\left| z \right|<4 \right\\}, {{\text{S}}_{2}}=\left\\{ z\in C:\operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \right\\} and {{\text{S}}_{3}}=\left\\{ z\in C:\operatorname{Re}Z>0 \right\\}.
Considering {{\text{S}}_{1}}=\left\\{ z\in C:\left| z \right|<4 \right\\}. Here we have that ∣z∣<4. Substituting the value z=x+iy in the above expression, then we will get
∣z∣<4⇒∣x+iy∣<4
We know that the modulus of the complex number a+ib is given by ∣a+ib∣=a2+b2. Using this formula in the above equation, then we will get
x2+y2<4
Squaring on both sides of the above expression, then we will get
x2+y2<16
Now the graph of the expression x2+y2<16 will be
Now considering {{\text{S}}_{2}}=\left\\{ z\in C:\operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \right\\}. In the above equation we have the value
\begin{aligned}
& \operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \\\
& \Rightarrow \operatorname{Im}\left[ \left( x+iy-1+i\sqrt{3} \right)\left( 1+i\sqrt{3} \right) \right]>0 \\\
& \Rightarrow y+\sqrt{3}x>0 \\\
& \Rightarrow {{\text{S}}_{2}}=\left\\{ z\in C:y+\sqrt{3}x>0 \right\\} \\\
\end{aligned}
Now the graph of the given data will be as shown in below
Now the minimum distance between point P(−1,3) and region S, which is perpendicular distance from point P(−1,3) to straight line y+3x=0
∴z∈Smin∣z−1+3i∣=12+(3)2(−3)+3(1)⇒z∈Smin∣z−1+3i∣=23−3
Hence option ‘C’ is correct.
Note:
For this problem we have evaluated the range of the variable z from each given set one by one by using graphical representations. We can also directly estimate the range of the variable z by using the given sets and calculate the required value.