Solveeit Logo

Question

Question: Calculate the value of \(\underset{z\in S}{\mathop{\min }}\,\left| 1-3i-z \right|=\) such that \(\te...

Calculate the value of minzS13iz=\underset{z\in S}{\mathop{\min }}\,\left| 1-3i-z \right|= such that S=S1S2S3\text{S}={{\text{S}}_{1}}\cap {{\text{S}}_{2}}\cap {{\text{S}}_{3}} where {{\text{S}}_{1}}=\left\\{ z\in C:\left| z \right|<4 \right\\}, {{\text{S}}_{2}}=\left\\{ z\in C:\operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \right\\} and {{\text{S}}_{3}}=\left\\{ z\in C:\operatorname{Re}Z>0 \right\\} .
A. 232\dfrac{2-\sqrt{3}}{2}
B. 2+32\dfrac{2+\sqrt{3}}{2}
C. 332\dfrac{3-\sqrt{3}}{2}
D. 3+32\dfrac{3+\sqrt{3}}{2}

Explanation

Solution

For this problem we need to calculate the minimum value of the given expression. In the problem we need to have the additional information that S=S1S2S3\text{S}={{\text{S}}_{1}}\cap {{\text{S}}_{2}}\cap {{\text{S}}_{3}} where {{\text{S}}_{1}}=\left\\{ z\in C:\left| z \right|<4 \right\\}, {{\text{S}}_{2}}=\left\\{ z\in C:\operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \right\\} and {{\text{S}}_{3}}=\left\\{ z\in C:\operatorname{Re}Z>0 \right\\}. From this data we will calculate the range of the variable zz by substituting the value z=x+iyz=x+iy. Now we will calculate the perpendicular distance from the point (1,3)\left( -1,3 \right) and the region to get the required result.

Complete step by step solution:
Given that, S=S1S2S3\text{S}={{\text{S}}_{1}}\cap {{\text{S}}_{2}}\cap {{\text{S}}_{3}} where {{\text{S}}_{1}}=\left\\{ z\in C:\left| z \right|<4 \right\\}, {{\text{S}}_{2}}=\left\\{ z\in C:\operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \right\\} and {{\text{S}}_{3}}=\left\\{ z\in C:\operatorname{Re}Z>0 \right\\}.
Considering {{\text{S}}_{1}}=\left\\{ z\in C:\left| z \right|<4 \right\\}. Here we have that z<4\left| z \right|<4. Substituting the value z=x+iyz=x+iy in the above expression, then we will get
z<4 x+iy<4 \begin{aligned} & \left| z \right|<4 \\\ & \Rightarrow \left| x+iy \right|<4 \\\ \end{aligned}
We know that the modulus of the complex number a+iba+ib is given by a+ib=a2+b2\left| a+ib \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}. Using this formula in the above equation, then we will get
x2+y2<4\sqrt{{{x}^{2}}+{{y}^{2}}}<4
Squaring on both sides of the above expression, then we will get
x2+y2<16{{x}^{2}}+{{y}^{2}}<16
Now the graph of the expression x2+y2<16{{x}^{2}}+{{y}^{2}}<16 will be

Now considering {{\text{S}}_{2}}=\left\\{ z\in C:\operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \right\\}. In the above equation we have the value
\begin{aligned} & \operatorname{Im}\left[ \dfrac{z-1+\sqrt{3}i}{1-\sqrt{3}i} \right]>0 \\\ & \Rightarrow \operatorname{Im}\left[ \left( x+iy-1+i\sqrt{3} \right)\left( 1+i\sqrt{3} \right) \right]>0 \\\ & \Rightarrow y+\sqrt{3}x>0 \\\ & \Rightarrow {{\text{S}}_{2}}=\left\\{ z\in C:y+\sqrt{3}x>0 \right\\} \\\ \end{aligned}
Now the graph of the given data will be as shown in below

Now the minimum distance between point P(1,3)P\left( -1,3 \right) and region S\text{S}, which is perpendicular distance from point P(1,3)P\left( -1,3 \right) to straight line y+3x=0y+\sqrt{3}x=0
minzSz1+3i=(3)+3(1)12+(3)2 minzSz1+3i=332 \begin{aligned} & \therefore \underset{z\in S}{\mathop{\min }}\,\left| z-1+3i \right|=\left| \dfrac{\left( -3 \right)+\sqrt{3}\left( 1 \right)}{\sqrt{{{1}^{2}}+{{\left( \sqrt{3} \right)}^{2}}}} \right| \\\ & \Rightarrow \underset{z\in S}{\mathop{\min }}\,\left| z-1+3i \right|=\dfrac{3-\sqrt{3}}{2} \\\ \end{aligned}
Hence option ‘C’ is correct.

Note:
For this problem we have evaluated the range of the variable zz from each given set one by one by using graphical representations. We can also directly estimate the range of the variable zz by using the given sets and calculate the required value.