Solveeit Logo

Question

Question: Calculate the value of \(\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left...

Calculate the value of arctan(1)+arccos(12)+arcsin(12)\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left( \dfrac{-1}{2} \right).

Explanation

Solution

To solve this problem, we should know the meaning of arcsin, arccos, arctan\arcsin ,\text{ }\arccos ,\text{ arctan}and the range of each function. The ranges of arcsin, arccos, arctan\arcsin ,\text{ }\arccos ,\text{ arctan} are [π2,π2] , [0,π] , (π2,π2)\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\text{ , }\left[ 0,\pi \right]\text{ , }\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) respectively. The equation arcsinx=θ\arcsin x=\theta means, in the given range of [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], the value of θ\theta for which sinθ=x\sin \theta =x. The above definition is the same for arccos, arctan\arccos ,\text{ arctan} also. Using this concept, we can calculate the values of the terms in the required expression, we get the values of the three angles and the sum of them, will give the required answer.

Complete step-by-step solution:
The equation arcsinx=θ\arcsin x=\theta means, in the given range of [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], the value of θ\theta for which sinθ=x\sin \theta =x.
The equation arccosx=θ\arccos x=\theta means, in the given range of [0,π]\left[ 0,\pi \right], the value of θ\theta for which cosθ=x\cos \theta =x.
The equation arctanx=θ\arctan x=\theta means, in the given range of (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right), the value of θ\theta for which tanθ=x\tan \theta =x.
Let us consider arctan1\arctan 1. We can infer that for the value of π4\dfrac{\pi }{4}, the value of tanπ4=1\tan \dfrac{\pi }{4}=1 is valid and π4\dfrac{\pi }{4} is in the range of (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right). So, we can write that
arctan1=π4\arctan 1=\dfrac{\pi }{4}
Let us consider arcsin(12)\arcsin \left( \dfrac{-1}{2} \right). We can infer that for the value of π6-\dfrac{\pi }{6}, the value of sin(π6)=12\sin \left( -\dfrac{\pi }{6} \right)=\dfrac{-1}{2} is valid and π6-\dfrac{\pi }{6} is in the range of [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]. So, we can write that
arcsin(12)=π6\arcsin \left( \dfrac{-1}{2} \right)=-\dfrac{\pi }{6}
Let us consider arccos(12)\arccos \left( \dfrac{-1}{2} \right). We can infer that for the value of 2π3\dfrac{2\pi }{3}, the value of cos(2π3)=12\cos \left( \dfrac{2\pi }{3} \right)=\dfrac{-1}{2} is valid and 2π3\dfrac{2\pi }{3} is in the range of [0,π]\left[ 0,\pi \right]. So, we can write that
arccos(12)=2π3\arccos \left( \dfrac{-1}{2} \right)=\dfrac{2\pi }{3}
Using the above values in the expression arctan(1)+arccos(12)+arcsin(12)\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left( \dfrac{-1}{2} \right), we get
arctan(1)+arccos(12)+arcsin(12)=π4+2π3π6=π4+4ππ6=π4+π2=3π4\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left( \dfrac{-1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}-\dfrac{\pi }{6}=\dfrac{\pi }{4}+\dfrac{4\pi -\pi }{6}=\dfrac{\pi }{4}+\dfrac{\pi }{2}=\dfrac{3\pi }{4}
\therefore The required value of the expression in the expression is 3π4=135\dfrac{3\pi }{4}={{135}^{\circ }}.

Note: An alternate way to do this problem is by using a property in inverse trigonometry. We can write it as arcsinx+arccosx=π2 x[1,1]\arcsin x+\arccos x=\dfrac{\pi }{2}\text{ }\forall \text{x}\in \left[ -1,1 \right]. Using this relation when x=12x=\dfrac{-1}{2}, we get arcsin(12)+arccos(12)=π2\arcsin \left( \dfrac{-1}{2} \right)+\arccos \left( \dfrac{-1}{2} \right)=\dfrac{\pi }{2}. Using this relation, we can directly rewrite the expression in the question as arctan1+π2\arctan 1+\dfrac{\pi }{2}.