Solveeit Logo

Question

Question: Calculate the total number of electrons present in \(1.4{\text{ g}}\) of dinitrogen gas....

Calculate the total number of electrons present in 1.4 g1.4{\text{ g}} of dinitrogen gas.

Explanation

Solution

To solve this we must first calculate the number of moles of dinitrogen gas in 1.4 g1.4{\text{ g}} of dinitrogen gas. Then calculate the number of molecules of dinitrogen gas in the calculated number of moles. Then calculate the total number of electrons. Remember one molecule of dinitrogen gas contains 14 electrons.

Complete step by step solution:
We are given 1.4 g1.4{\text{ g}} of dinitrogen gas. Dinitrogen gas has a chemical formula N2{{\text{N}}_{\text{2}}}.
We know that the number of moles is the ratio of mass to the molar mass. Thus,
Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
Substitute 1.4 g1.4{\text{ g}} for the mass of nitrogen gas, 28 g/mol28{\text{ g/mol}} for the molar mass of dinitrogen gas. Thus,
Number of moles of N2=1.4 g28 g/mol{\text{Number of moles of }}{{\text{N}}_2} = \dfrac{{1.4{\text{ g}}}}{{28{\text{ g/mol}}}}
Number of moles of N2=0.05 mol{\text{Number of moles of }}{{\text{N}}_2} = 0.05{\text{ mol}}
Thus, the number of moles of dinitrogen gas in 1.4 g1.4{\text{ g}} of dinitrogen gas are 0.05 mol0.05{\text{ mol}}.
We know that one mole of any substance contains 6.022×10236.022 \times {10^{23}} molecules of the substance. 6.022×10236.022 \times {10^{23}} is known as Avogadro’s number.
Thus, 1 mol1{\text{ mol}} of dinitrogen gas contains 6.022×10236.022 \times {10^{23}} molecules of dinitrogen gas. Thus, the molecules of dinitrogen gas in 0.05 mol0.05{\text{ mol}} are,
Number of molecules of N2=0.05 mol×6.022×10231 mol{\text{Number of molecules of }}{{\text{N}}_2} = 0.05{\text{ mol}} \times \dfrac{{6.022 \times {{10}^{23}}}}{{{\text{1 mol}}}}
Number of molecules of N2=3.01×1023 molecules{\text{Number of molecules of }}{{\text{N}}_2} = 3.01 \times {10^{23}}{\text{ molecules}}
Thus, the molecules of dinitrogen gas in 0.05 mol0.05{\text{ mol}} are 3.01×1023 molecules3.01 \times {10^{23}}{\text{ molecules}}.
We know that one molecule of dinitrogen gas contains 14 electrons. Thus, the number of electrons in 3.01×1023 molecules3.01 \times {10^{23}}{\text{ molecules}} of dinitrogen gas are,
Number of electron=3.01×1023 molecules×14 electrons1 molecule{\text{Number of electron}} = 3.01 \times {10^{23}}{\text{ molecules}} \times \dfrac{{14{\text{ electrons}}}}{{1{\text{ molecule}}}}
Number of electron=4.214×1023 electrons{\text{Number of electron}} = 4.214 \times {10^{23}}{\text{ electrons}}

Thus, the total number of electrons present in 1.4 g1.4{\text{ g}} of dinitrogen gas are 4.214×1023 electrons4.214 \times {10^{23}}{\text{ electrons}}.

Note: The number 6.022×10236.022 \times {10^{23}} is known as Avogadro’s number. The number of molecules of a compound is Avogadro’s number (6.022×1023 molecules)\left( {6.022 \times {{10}^{23}}{\text{ molecules}}} \right) for 1 mole of compound. We know that the atomic number of nitrogen is 7. Thus, nitrogen has 7 electrons. Thus, dinitrogen has 14 electrons.