Solveeit Logo

Question

Question: Calculate the standard cell potentials of galvanic cells in which the following reactions take place...

Calculate the standard cell potentials of galvanic cells in which the following reactions take place:
(i) 2Cr(s) + 3Cd2+(aq)2Cr3+(aq) + 3Cd(s)2C{{r}_{\left( s \right)}}\text{ }+\text{ }3C{{d}^{2+}}_{\left( aq \right)}\to 2C{{r}^{3+}}_{\left( aq \right)}\text{ }+\text{ }3C{{d}_{\left( s \right)}}
(ii) Fe2+(aq) + Ag+(aq)Fe3+(aq) + Ag(s)F{{e}^{2+}}_{\left( aq \right)}\text{ }+\text{ }A{{g}^{+}}_{\left( aq \right)}\to F{{e}^{3+}}_{\left( aq \right)}\text{ }+\text{ }A{{g}_{\left( s \right)}}
Calculate the ΔrGo{{\Delta }_{r}}{{G}^{o}}, and equilibrium constant of the reactions.

Explanation

Solution

standard state potential of a cell is the potential under standard state conditions, which is approximated with concentrations of 1 molar (1 mole per liter) and pressures of 1 atmosphere at 25C{{25}^{\circ }}C(298K). Attempt this question by calculating the standard cell potential and then use them in the formulas written below to calculate ΔrGo{{\Delta }_{r}}{{G}^{o}} and equilibrium constant of the reactions.

Formula used: We will require the following formulas:-
ΔrGo=nFEocell ΔrGo=RTlnK Eocell=EoREoL  {{\Delta }_{r}}{{G}^{o}}=-nF{{E}^{o}}_{cell} \\\ {{\Delta }_{r}}{{G}^{o}}=-RT\ln K \\\ {{E}^{o}}_{cell}={{E}^{o}}_{R}-{{E}^{o}}_{L} \\\

Complete step-by-step answer: Let us first begin with the representation of the cell followed by other calculations:-
(i) EoCr3+/Cr=0.74V{{E}^{o}}_{C{{r}^{3+}}/Cr}=-0.74V
EoCd2+/Cd=0.40V{{E}^{o}}_{C{{d}^{2+}}/Cd}=-0.40V
-The galvanic cell of the given reaction is depicted as follows:-
Cr(s)Cr3+(aq)Cd2+(aq)Cr(s)C{{r}_{(s)}}|C{{r}^{3+}}_{(aq)}||C{{d}^{2+}}_{(aq)}|C{{r}_{(s)}}
The standard cell potential is Eocell=EoREoL{{E}^{o}}_{cell}={{E}^{o}}_{R}-{{E}^{o}}_{L}
= -0.40 - (-0.74)
= + 0.34 V
-Calculation ofΔrGo{{\Delta }_{r}}{{G}^{o}}:-
ΔrGo=nFEocell{{\Delta }_{r}}{{G}^{o}}=-nF{{E}^{o}}_{cell}
In the equation 2Cr(s) + 3Cd2+(aq)2Cr3+(aq) + 3Cd(s)2C{{r}_{\left( s \right)}}\text{ }+\text{ }3C{{d}^{2+}}_{\left( aq \right)}\to 2C{{r}^{3+}}_{\left( aq \right)}\text{ }+\text{ }3C{{d}_{\left( s \right)}}
N (No. of moles of electron) = 6
F (Faraday constant) = 96487 C/mol
Eocell{{E}^{o}}_{cell} = + 0.34 V
Therefore, ΔrGo{{\Delta }_{r}}{{G}^{o}}for the reaction:-
\begin{array}{*{35}{l}} \begin{aligned} & {{\Delta }_{r}}{{G}^{o}}=-nF{{E}^{o}}_{cell}\text{ } \\\ & \text{=}-\text{ }6\text{ }\times \text{ }96487\text{ }C\text{ }mo{{l}^{~-\text{ }1}}~\times \text{ }0.34\text{ }V \\\ \end{aligned} \\\ =\text{ }-\text{ }196833.48\text{ }CV\text{ }mol{{~}^{-\text{ }1}} \\\ =\text{ }-\text{ }196833.48\text{ }J\text{ }mo{{l}^{~-\text{ }1}} \\\ =\text{ }-\text{ }196.83\text{ }kJ\text{ }mo{{l}^{~-\text{ }1}} \\\ \end{array}
-Calculation of Equilibrium constant (K):-
ΔrGo=RTlnK{{\Delta }_{r}}{{G}^{o}}=-RT\ln K
Where,
R = universal gas constant = 8.314JmolK8.314\dfrac{J}{mol\cdot K}
T= temperature (on Kelvin scale) =298K
Also ΔrGo=RTlnK=2.303RTlogK{{\Delta }_{r}}{{G}^{o}}=-RT\ln K=-2.303RT\log K
On rearranging the formula and substituting the values, we get:-
ΔrGo=2.303RTlogK logK=196.83×1032.303×8.314×298 \begin{aligned} & {{\Delta }_{r}}{{G}^{o}}=-2.303RT\log K \\\ & \log K=\dfrac{-196.83\times {{10}^{3}}}{2.303\times 8.314\times 298} \\\ \end{aligned}
logK= 34.496\log K=\text{ }34.496
K = antilog (34.496)
K = 3.13×10343.13\times {{10}^{-34}}
-Therefore, the standard cell potential of the given reaction is 0.34V, ΔrGo= 196.83 kJ mol  1{{\Delta }_{r}}{{G}^{o}}=-\text{ }196.83\text{ }kJ\text{ }mo{{l}^{~-\text{ }1}}and equilibrium constant (K) = 3.13×10343.13\times {{10}^{-34}}
(ii) EoFe3+/Fe2+=0.77V{{E}^{o}}_{F{{e}^{3+}}/F{{e}^{2+}}}=0.77V
EoAg+/Ag=0.80V{{E}^{o}}_{A{{g}^{+}}/Ag}=0.80V
-The galvanic cell of the given reaction is depicted as follows:-
Fe2+(aq)Fe3+(aq)Ag+(aq)Ag(s)F{{e}^{2+}}_{(aq)}|F{{e}^{3+}}_{(aq)}||A{{g}^{+}}_{(aq)}|A{{g}_{(s)}}
The standard cell potential is Eocell=EoREoL{{E}^{o}}_{cell}={{E}^{o}}_{R}-{{E}^{o}}_{L}
= 0.80 - 0.77
= 0.03 V
-Calculation of ΔrGo{{\Delta }_{r}}{{G}^{o}}:-
ΔrGo=nFEocell{{\Delta }_{r}}{{G}^{o}}=-nF{{E}^{o}}_{cell}
In the equation Fe2+(aq) + Ag+(aq)Fe3+(aq) + Ag(s)F{{e}^{2+}}_{\left( aq \right)}\text{ }+\text{ }A{{g}^{+}}_{\left( aq \right)}\to F{{e}^{3+}}_{\left( aq \right)}\text{ }+\text{ }A{{g}_{\left( s \right)}}
N (No. of moles of electron) = 1
F (Faraday constant) = 96487 C/mol
Eocell{{E}^{o}}_{cell} = + 0.03 V
Therefore, ΔrGo{{\Delta }_{r}}{{G}^{o}}for the reaction:-
\begin{array}{*{35}{l}} \begin{aligned} & {{\Delta }_{r}}{{G}^{o}}=-nF{{E}^{o}}_{cell}\text{ } \\\ & \text{=}-\text{ }1\text{ }\times \text{ }96487\text{ }C\text{ }mo{{l}^{~-\text{ }1}}~\times \text{ }0.03\text{ }V \\\ \end{aligned} \\\ =\text{ }-\text{ }2894.61\text{ }CV\text{ }mol{{~}^{-\text{ }1}} \\\ =\text{ }-\text{ }2894.61\text{ }J\text{ }mo{{l}^{~-\text{ }1}} \\\ =\text{ }-\text{ }2.89\text{ }kJ\text{ }mo{{l}^{~-\text{ }1}} \\\ \end{array}
-Calculation of Equilibrium constant (K):-
ΔrGo=RTlnK{{\Delta }_{r}}{{G}^{o}}=-RT\ln K
Where,
R = universal gas constant = 8.314JmolK8.314\dfrac{J}{mol\cdot K}
T= temperature (on Kelvin scale) =298K
Also ΔrGo=RTlnK=2.303RTlogK{{\Delta }_{r}}{{G}^{o}}=-RT\ln K=-2.303RT\log K
On rearranging the formula and substituting the values, we get:-
ΔrGo=2.303RTlogK logK=2.89461×1032.303×8.314×298 \begin{aligned} & {{\Delta }_{r}}{{G}^{o}}=-2.303RT\log K \\\ & \log K=\dfrac{-2.89461\times {{10}^{3}}}{2.303\times 8.314\times 298} \\\ \end{aligned}
logK= 0.5073\log K=\text{ }0.5073
K = antilog (0.5073)
K = 3.22
-Therefore, the standard cell potential of the given reaction is 0.03V, ΔrGo= 2.89 kJ mol  1{{\Delta }_{r}}{{G}^{o}}=-\text{ }2.89\text{ }kJ\text{ }mo{{l}^{~-\text{ }1}}and equilibrium constant (K) = 3.22

Note: Kindly remember to accordingly convert units and use them in the formula as required to get the accurate result.
-For such types of long answer questions always prefer the step by step method, so as to avoid any kind of miscalculations and also do not forget negative signs which most of us usually neglect while solving the questions.