Solveeit Logo

Question

Chemistry Question on Electrochemistry

Calculate the standard cell potentials of galvanic cells in which the following reactions take place:
(i) 2Cr(S)+3Cd(aq)2+2Cr(aq)3++3Cd2Cr_{(S)}+3Cd^{2+}_{(aq)} \rightarrow 2Cr^{3+}_{(aq)}+3Cd
(ii) Fe(aq)2++Ag(aq)+Fe(Aq)3++Ag(s)Fe^{2+}_{(aq)}+Ag^+_{(aq)} \rightarrow Fe^{3+}_{(Aq)}+Ag(s)
Calculate the rG\triangle_rG^\ominus and equilibrium constant of the reactions.

Answer

(i) ECr3+/Cr=0.74VE^{\ominus}_{Cr^{3+} / Cr} = 0.74 V

ECd2+/Cd=0.40VE^\ominus_{Cd^{2+}/ Cd} = -0.40 V

The galvanic cell of the given reaction is depicted as:

Cr(s)Cr(aq)3+Cd(aq)2+Cd(s)Cr_{(s)}|Cr^{3+}_{(aq)}||Cd^{2+}_{(aq)}|Cd_{(s)}

Now, the standard cell potential is

EcellE^\ominus_{cell}= ERE^{\ominus}_{R}-ELE^\ominus_L

=-0.40-(-0.74)

=+0.34 V

tG=nFEcell\triangle_tG^\ominus = -nFE^\ominus_{cell}

in the given equation,

n=6

F= 96487 C mol-1

EcellE^\ominus_{cell} = +0.34 V

Then, tG\triangle_tG^\ominus = -6 * 96487 C mol-1 ×\times 0.34 V

= - 196833.48 CV mol-1

= - 196833.48 j mol-1

= - 196.83 kj mol-1

Again

tG\triangle_tG^\ominus = -RT in K

tG\Rightarrow \triangle_tG^\ominus = - 2.303 R$$\Tau in K

\Rightarrow log K = - tG2.303RT\frac{\triangle_tG^\ominus}{2.303RT}

= 196.83×1032.303×8.314×298\frac{-196.83 \times 10^3}{2.303 \times 8.314 \times 298}

= 34.496

∴ K = antilog (34.496) = 3.13 × 1034


(ii) EE^\ominus Fe3+/Fe2+ = 0.77 V

EE^\ominus Ag+/Ag = -0.80 V

The galvanic cell of the given reaction is depicted as:

Fe2+ (aq) | Fe3+(aq)||Ag+(aq)|Ag(s)

Now, the standard cell potential is

EcellE^\ominus_{cell} = ERE^{\ominus}_{R}- ELE^\ominus_L

= 0.80-0.77

=0.03 V

Here, n = 1.

Then, tG=nFEcell\triangle_tG^\ominus = -nFE^\ominus_{cell}

= - 1 × 96487 C mol-1 × 0.03 V

= - 2894.61 J mol-1

= - 2.89 kJ mol-1

Again,

tG\triangle_tG^\ominus = - 2.303 RT in K

\Rightarrow log K = - tG2.303RT\frac{\triangle_tG^\ominus}{2.303RT}

= 2894.612.303×8.314×298\frac{-2894.61}{2.303\times 8.314 \times 298}

= 0.5073

∴ K = antilog (0.5073)

= 3.2 (approximately)