Solveeit Logo

Question

Question: Calculate the \[{\rm{pH}}\]of the following solutions: a)\[{\rm{2}}\,{\rm{g }}\] of \[{\rm{TlOH}}\...

Calculate the pH{\rm{pH}}of the following solutions:
a)2g{\rm{2}}\,{\rm{g }} of TlOH{\rm{TlOH}} dissolved in water to give 2litre{\rm{2}}\,{\rm{litre}} of solution.
b) 0.3g{\rm{0}}{\rm{.3}}\,{\rm{g }} of Ca(OH)2{\rm{Ca(OH}}{{\rm{)}}_2}dissolved in water to give 500ml500\,{\rm{ml}}of solution.
c) 0.3g{\rm{0}}{\rm{.3}}\,{\rm{g }} of NaOH{\rm{NaOH}}dissolved in water to give 200ml{\rm{200}}\,{\rm{ml}}of solution.
d) 1ml1\,{\rm{ml }} of 13.6MHCl{\rm{13}}{\rm{.6}}\,{\rm{M}}\,{\rm{HCl}}is diluted with water to give 1litre1\,{\rm{litre}}of solution.

Explanation

Solution

As we know that, pH{\rm{pH}}measures the solution is either acidic or basic. There are different range of measuring pH{\rm{pH}}as- if the pH{\rm{pH}}value is below seven, then the solution will be acidic, if above then solution will be basic and if equal then neutral. If we know the concentration of acids or bases then we can find out the pH{\rm{pH}}of the solution.

Complete step by step answer:
The pH{\rm{pH}}of above questions can be calculated in steps as-
Step 1{\rm{1}}-First of all we will calculate the concentration by the formula.
Concentration=numberofmolesofcompoundvolume(Litre){\rm{Concentration}} = \dfrac{{{\rm{number}}\,{\rm{of}}\,{\rm{moles}}\,{\rm{of}}\,{\rm{compound}}}}{{{\rm{volume(Litre)}}}}
Step 22- then we write the equation of compound in water
Step 33 -the we apply the formula for base as
pOH=log[OH]{\rm{pOH}} = - {\rm{log}}\left[ {{\rm{O}}{{\rm{H}}^ - }} \right]
pH=14pOH{\rm{pH}} = {\rm{14}} - {\rm{pOH}}
And for acids
pH=log[H+]{\rm{pH}} = - {\rm{log}}\left[ {{{\rm{H}}^ + }} \right]
Let’s we find the answers:
a) First, let’s calculate the number of moles of TlOH{\rm{TlOH}} as follows;
number of moles of TlOH = 2g221g/mole\dfrac{2g}{{221g/mole}}
and volume(V)=2litre{\rm{(V)}} = {\rm{2}}\,{\rm{litre}}
putting above value in Step 1{\rm{1}}we get,

{\rm{C}} = \dfrac{{{\rm{0}}{\rm{.009}}\,{\rm{mole}}}}{{{\rm{2}}\,{\rm{litre}}}}\\\ = {\rm{4}}{\rm{.5 \times }}\,{\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{M}} \end{array}$$ Now we will write an equation which represents concentration of hydroxide- $$\begin{array}{l} \,\,\,{\rm{TlOH}}\,\,\,\,\,\,\, \to {\rm{T}}{{\rm{l}}^{{\rm{ + 1}}}}{\rm{(aq) + O}}{{\rm{H}}^{{\rm{ - 1}}}}{\rm{(aq)}}\\\ \,\,\,\,\,{\rm{4}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{M}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{4}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{M}}\,\, \end{array}$$ We get $$\begin{array}{c} {\rm{pOH}} = - {\rm{log}}\left[ {4.5 \times {{10}^{ - 3}}} \right]\\\ {\rm{pOH}} = 2.35\,\,\,\,\,\,\,\,\,\,{\rm{(log}}\,{\rm{4}}{\rm{.5}} = {\rm{0}}{\rm{.65)}} \end{array}$$ $$\begin{array}{c} {\rm{pH}} = {\rm{14}} - {\rm{2}}{\rm{.35}}\\\ = {\rm{11}}{\rm{.65}} \end{array}$$ b) Similarly, Number of mole fraction of $Ca{(OH)_2}$ = $\dfrac{0.3g}{{74g/mole}}$ and volume$${\rm{(V)}} = {\rm{500 ml}}$$ putting above value in Step $${\rm{1}}$$we get, $$\begin{array}{c} {\rm{C}} = \dfrac{{{\rm{0}}{\rm{.0041}}\,{\rm{mole}}}}{{0.5\,{\rm{litre}}}}\\\ = {\rm{8}}{\rm{.11 \times }}\,{\rm{1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{M}} \end{array}$$ Now, we will write an equation which represents concentration of hydroxide- $$\begin{array}{l} \,\,\,{\rm{Ca(OH}}{{\rm{)}}_2}\,\,\,\,\,\,\, \to C{a^{{\rm{ + 2}}}}{\rm{(aq) + 2O}}{{\rm{H}}^{{\rm{ - 1}}}}{\rm{(aq)}}\\\ \,\,\,\,\,8.11{\rm{ \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{M}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \times 8.11{\rm{ \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{M}}\,\, \end{array}$$ We get, $$\begin{array}{l} {\rm{pOH}} = - {\rm{log}}\left[ {16.22 \times {{10}^{ - 3}}} \right]\\\ {\rm{pOH}} = 1.79\,\,\,\,\,\,\,\,\,{\rm{(log}}\,16.22{\rm{ = 1}}{\rm{.21)}} \end{array}$$ $$\begin{array}{c} {\rm{pH}} = {\rm{14}} - {\rm{1}}{\rm{.79}}\\\ = {\rm{12}}{\rm{.21}} \end{array}$$ c) For $${\rm{0}}{\rm{.3}}\,{\rm{g }}$$ of $${\rm{NaOH}}$$dissolved in water to give $${\rm{200}}\,{\rm{ml}}$$of solution. Number of moles NaOH =$\dfrac{0.3g}{{40g/mole}}$ and volume$${\rm{(V) = 0}}{\rm{.2}}\,{\rm{litre}}$$ putting above value in Step $${\rm{1}}$$we get, $$\begin{array}{c} {\rm{C}} = \dfrac{{{\rm{0}}{\rm{.0075}}\,{\rm{mole}}}}{{0.2\,{\rm{litre}}}}\\\ = {\rm{3}}{\rm{.75 \times }}\,{\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{M}} \end{array}$$ Now, we will write an equation which represents concentration of hydroxide- $$\begin{array}{l} \,\,\,{\rm{NaOH}}\,\,\,\,\,\, \to {\rm{N}}{{\rm{a}}^{{\rm{ + 1}}}}{\rm{(aq) + O}}{{\rm{H}}^{{\rm{ - 1}}}}{\rm{(aq)}}\\\ \,\,\,\,\,3.75{\rm{ \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{M}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \times 3.75{\rm{ \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{M}}\,\, \end{array}$$ We get $$\begin{array}{c} {\rm{pOH}} = - {\rm{log}}\left[ {7.5 \times {{10}^{ - 2}}} \right]\\\ {\rm{pOH}} = 1.124 \end{array}$$ $$\begin{array}{c} {\rm{pH}} = {\rm{14}} - {\rm{1}}{\rm{.124}}\\\ = {\rm{12}}{\rm{.8}} \end{array}$$ d) Finally, for $$1\,{\rm{ml }}$$ of $${\rm{13}}{\rm{.6}}\,{\rm{M}}\,{\rm{HCl}}$$is diluted with water to give $$1\,{\rm{litre}}$$of solution. $$\begin{array}{c} {\rm{number}}\,{\rm{of}}\,{\rm{moles}}\,{\rm{of}}\,{\rm{HC}}\,{\rm{l}}\, = {\rm{13}}{\rm{.6}}\,{\rm{M \times }}\,{\rm{1}}\,{\rm{ml}}\\\ {\rm{ = 13}}{\rm{.6}}\,{\rm{ \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{mole}} \end{array}$$ $$\begin{array}{c} {\rm{C}} = \dfrac{{{\rm{13}}{\rm{.6}}\, \times {\rm{1}}{{\rm{0}}^{ - 3}}{\rm{mole}}}}{{1\,{\rm{litre}}}}\\\ {\rm{ = 13}}{\rm{.6}} \times {\rm{1}}{{\rm{0}}^{ - 3}}{\rm{M}} \end{array}$$ $$\begin{array}{l} \,\,\,{\rm{HCl}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\rm{H}}^{{\rm{ + 1}}}}{\rm{(aq) + C}}{{\rm{l}}^{{\rm{ - 1}}}}{\rm{(aq)}}\\\ 13.6{\rm{ \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{M}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,13.6{\rm{ \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}{\rm{M}}\,\, \end{array}$$ $$\begin{array}{c} {\rm{pH}} = - {\rm{log}}\left[ {13.6\, \times \,{{10}^{ - 3}}} \right]\\\ = 1.87 \end{array}$$ **Note:** More is the stronger acid, smaller will be the $${\rm{pH}}$$ and more stronger the base, larger the value of $${\rm{pH}}$$.