Solveeit Logo

Question

Question: Calculate the relativistic momentum of a particle of mass \(1.76\times {{10}^{-27}}kg\) if the relat...

Calculate the relativistic momentum of a particle of mass 1.76×1027kg1.76\times {{10}^{-27}}kg if the relativistic energy is equal to three times the rest energy.
a)2.86×1018kgm/s2.86\times {{10}^{-18}}kgm/s
b)9.68×1018kgm/s9.68\times {{10}^{-18}}kgm/s
c)2.05×10kgm/s2.05\times 10kgm/s
d)1.29×10kgm/s1.29\times 10kgm/s

Explanation

Solution

Relativistic case is used when particle velocity is compared to the speed of light. The relativistic momentum is defined as the γ\gamma times rest mass times velocity of the particle.

Formula used:
1. Relativistic momentum pp is,
p=γm0vp=\gamma {{m}_{0}}v
Here,γ=11v2c2\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}, vv is velocity of particle, mm rest mass of the particle,cc is speed of light i.e. 3×108m/s3\times {{10}^{8}}m/s .
2. Relativistic kinetic energy Ek{{E}_{k}},
Ek=(γ1)m0c2{{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}
Here, m0c2{{m}_{0}}{{c}^{2}} is rest mass energy E0{{E}_{0}} of the particle.

Complete step by step answer:
You have given,
Mass m0=1.76×1027kg{{m}_{0}}=1.76\times {{10}^{-27}}kg
The Relativistic kinetic energy Ek{{E}_{k}}is three times the rest mass energy E0{{E}_{0}},
i.e. Ek=3E0......(1){{E}_{k}}=3{{E}_{0}}......(1)
you have to find relativistic momentum pp.
p=γm0v......(2)p=\gamma {{m}_{0}}v......(2)
To find the relativistic momentum ppfirst you have to calculate the velocity vvand the relativistic factor γ\gamma ,
The relativistic kinetic energy Ek{{E}_{k}} ,
Ek=(γ1)m0c2......(3){{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}......(3)
The rest mass energy E0{{E}_{0}} of the particle is
E0=m0c2......(4){{E}_{0}}={{m}_{0}}{{c}^{2}}......(4)
Put the values of equation 2 and 3 in equation 1,
(γ1)m0c2=3m0c2\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}
Expand,
γm0c2m0c2=3m0c2\gamma {{m}_{0}}{{c}^{2}}-{{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}
Solve for γ\gamma
γm0c2=4m0c2 γ=4......(5) \begin{aligned} & \gamma {{m}_{0}}{{c}^{2}}=4{{m}_{0}}{{c}^{2}} \\\ & \Rightarrow \gamma =4......(5) \\\ \end{aligned}
Now, calculate velocity vv,
You know,
γ=11v2c2\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}
Put value of γ\gamma
4=11v2c24=\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}
Take reciprocal of equation,
1v2c2=14\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}=\dfrac{1}{4}
Square both sides,
1v2c2=1161-\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{1}{16}
Simplify,
v2c2=1516\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{15}{16}
Solve for vv, multiply both sides by c2{{c}^{2}} and take square root,
v=1516c......(5)v=\sqrt{\dfrac{15}{16}}c......(5)
Put the values of equation 5 and 6 in equation 2
p=4×1.76×1027×15163×108p=4\times 1.76\times {{10}^{-27}}\times \sqrt{\dfrac{15}{16}}3\times {{10}^{8}}
p=2.86×1018kgm/s\therefore p=2.86\times {{10}^{-18}}kgm/s.

So, the correct answer is “Option A”.

Note:
Students generally get confused with rest mass energy and rest mass kinetic energy.
So, keep clear in mind that rest mass kinetic energy means the energy of particle at rest i.e. kinetic energy is zero but the rest mass energy term comes from relativistic physics that is given by the Einstein formula of energy mass conservation,
i.e. rest mass energy E0=m0c2{{E}_{0}}={{m}_{0}}{{c}^{2}}