Solveeit Logo

Question

Question: Calculate the relative rate of effusion of \[S{O_2}\] to\[C{H_4}\] under given condition: \[{\rm{(...

Calculate the relative rate of effusion of SO2S{O_2} toCH4C{H_4} under given condition:
(i){\rm{(i)}} under similar condition of pressure and temperature
(ii){\rm{(ii)}} through a container containing SO2S{O_2} and CH4C{H_4} in 3:23:2 mass ratio
(iii){\rm{(iii)}} if the mixture obtained by effusing out a mixture (nSO2/nCH4=8/1)(n_{SO_2}/n_{CH_4} \, = \, 8/1) for three effusing steps.
(A) (i)12(ii)316(iii)12{\rm{(i)}}\,\dfrac{{\rm{1}}}{{\rm{2}}}\,{\rm{(ii)}}\,\dfrac{{\rm{3}}}{{{\rm{16}}}}\,{\rm{(iii)}}\,\dfrac{{\rm{1}}}{{\rm{2}}}
(B) (i)14(ii)38(iii)14{\rm{(i)}}\dfrac{{\rm{1}}}{4}{\rm{(ii)}}\dfrac{{\rm{3}}}{8}{\rm{(iii)}}\dfrac{{\rm{1}}}{4}
(C) (i)16(ii)516(iii)12{\rm{(i)}}\dfrac{{\rm{1}}}{6}{\rm{(ii)}}\dfrac{5}{{{\rm{16}}}}{\rm{(iii)}}\dfrac{{\rm{1}}}{{\rm{2}}}
(D) none of these

Explanation

Solution

As we know that, the diffusion of gases is due to the rapid movement of gas molecules and the presence of large empty space between the molecules. If the molecules are closely packed, then the rate of effusion is very less.

Complete answer
So the diffusion or effusion law is stated by Graham and it is stated as-
Under similar conditions of pressure and temperature, the rate of effusion of gases are inversely proportional to the square roots of their densities.
And we definitely know that density is directly proportional to the mass.
So, if the rate of effusion is represented as r{\rm{r}} and ρ\rho is the density ,n{\rm{n}} is the number of mole, x{\rm{x}} is the number of effusing steps and M{\rm{M}} is the molar mass then the rate of effusion of SO2S{O_2}toCH4C{H_4} is written as-
rSO2rCH4=ρCH4ρSO2=MCH4MSO2=nxSO2nxCH4MCH4MSO2(i)\dfrac{{{{\rm{r}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{{{{\rm{r}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}\,{\rm{ = }}\,\sqrt {\dfrac{{{{\rm{\rho }}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}{{{{\rm{\rho }}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}} \,{\rm{ = }}\,\sqrt {\dfrac{{{{\rm{M}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}{{{{\rm{M}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}} \, = \,\dfrac{{{{\rm{n}}^{\rm{x}}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}{{{{\rm{n}}^{\rm{x}}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}\,\sqrt {\dfrac{{{{\rm{M}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}{{{{\rm{M}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}} - - - {\rm{(i)}}
The molecular mass of SO2=64gmole{\rm{S}}{{\rm{O}}_{\rm{2}}}\, = \,64\,\dfrac{{\rm{g}}}{{{\rm{mole}}}}
The molecular mass of CH4=16gmole{\rm{C}}{{\rm{H}}_{\rm{4}}}\, = \,\,16\,\dfrac{{\rm{g}}}{{{\rm{mole}}}}
The values are Putting in the above formula and we get as

rSO2rCH4=16gmole64gmole rSO2rCH4=14 rSO2rCH4=12\Rightarrow \dfrac{{{{\rm{r}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{{{{\rm{r}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}\,{\rm{ = }}\,\sqrt {\dfrac{{{\rm{16}}\dfrac{{\rm{g}}}{{{\rm{mole}}}}}}{{{\rm{64}}\,\dfrac{{\rm{g}}}{{{\rm{mole}}}}\,}}} \\\ \Rightarrow \dfrac{{{{\rm{r}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{{{{\rm{r}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}} = \,\sqrt {\dfrac{{\rm{1}}}{{{\rm{4}}\,\,}}} \\\ \Rightarrow \dfrac{{{{\rm{r}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{{{{\rm{r}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}} = \,\dfrac{1}{2}

So, rate of effusion is 12\dfrac{1}{2}
Let’s calculate the value of (ii){\rm{(ii)}}
We are Given as mass ratio between SO2{\rm{S}}{{\rm{O}}_{\rm{2}}}and CH4{\rm{C}}{{\rm{H}}_{\rm{4}}}is 3:23:2 means the mass of SO2=3g{\rm{S}}{{\rm{O}}_{\rm{2}}}\,{\rm{ = }}\,{\rm{3}}\,{\rm{g}} and the mass of CH4=2g{\rm{C}}{{\rm{H}}_4}\,{\rm{ = }}\,{\rm{2}}\,{\rm{g}} so, we can calculate number of moles of SO2{\rm{S}}{{\rm{O}}_{\rm{2}}}and CH4{\rm{C}}{{\rm{H}}_{\rm{4}}}.
so, by putting these values in our (i){\rm{(i)}} as-

rSO2rCH4=364mole216mole16gmole64gmole rSO2rCH4=3814 =316\dfrac{{{{\rm{r}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{{{{\rm{r}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}\,{\rm{ = }}\,\dfrac{{\dfrac{3}{{64}}{\rm{mole}}}}{{\dfrac{2}{{16}}{\rm{mole}}}}\,\sqrt {\dfrac{{16\dfrac{{\rm{g}}}{{{\rm{mole}}}}}}{{64\dfrac{{\rm{g}}}{{{\rm{mole}}}}}}} \\\ \dfrac{{{{\rm{r}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{{{{\rm{r}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}\,{\rm{ = }}\,\dfrac{3}{8}\sqrt {\dfrac{{1\,}}{{4\,}}} \\\ = \,\dfrac{3}{{16}}

Let’s calculate the value of (iii){\rm{(iii)}}
In this case we are Given as mole ratio between of SO2{\rm{S}}{{\rm{O}}_{\rm{2}}}and CH4{\rm{C}}{{\rm{H}}_{\rm{4}}} (nSO2/nCH4=8/1)(n_{SO_2}/n_{CH_4} \, = \, 8/1) so for three steps we have to first calculate n3SO2/n3CH4{{{{\rm{n}}^{\rm{3}}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}/{{{{\rm{n}}^{\rm{3}}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}
Now,
n3SO2n3CH4=nSO2nCH4[MCH4MSO2]3(ii)\dfrac{{{{\rm{n}}^{\rm{3}}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}{{{{\rm{n}}^{\rm{3}}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}\,{\rm{ = }}\,\dfrac{{{{\rm{n}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{{{{\rm{n}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}{\left[ {\sqrt {\dfrac{{{{\rm{M}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}{{{{\rm{M}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}} } \right]^{\rm{3}}}{\rm{ - - - (ii)}}
By using equation (ii){\rm{(ii)}}, we can get-

n3SO2n3CH4=81[14]3 =11\Rightarrow \dfrac{{{{\rm{n}}^{\rm{3}}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}{{{{\rm{n}}^{\rm{3}}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}\,{\rm{ = }}\,\dfrac{8}{1}{\left[ {\sqrt {\dfrac{1}{{4\,}}} } \right]^3}\\\ = \dfrac{1}{1}

Therefore, Putting the value of relative number of moles for three steps in (i){\rm{(i)}}we get the answer as

rSO2rCH4=1114 =12\Rightarrow \dfrac{{{{\rm{r}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{{{{\rm{r}}_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}}}\,{\rm{ = }}\,\dfrac{1}{1}\sqrt {\dfrac{{1\,}}{{4\,}}} \\\ = \dfrac{1}{2}

Therefore, the relative rate of effusion for the three steps are (i)12(ii)316(iii)12{\rm{(i)}}\dfrac{{\rm{1}}}{{\rm{2}}}{\rm{(ii)}}\dfrac{{\rm{3}}}{{{\rm{16}}}}{\rm{(iii)}}\dfrac{{\rm{1}}}{{\rm{2}}} respectively.

**Our correct option is option (A).

Note: **
Effusion is the particular case of diffusion in which the gases contained in a vessel are allowed to escape through hole. Graham's law of diffusion is also valid for effusion.