Solveeit Logo

Question

Question: Calculate the \( pH \) of buffer solution with \( 0.1{\text{ M}} \) each of \( C{H_3}COOH \) and \( ...

Calculate the pHpH of buffer solution with 0.1 M0.1{\text{ M}} each of CH3COOHC{H_3}COOH and CH3COONaC{H_3}COONa . What will be changed in pHpH in addition to the following?
(i) 0.01 M HCl(i){\text{ 0}}{\text{.01 M HCl}}
(ii) 0.01 M NaOH(ii){\text{ 0}}{\text{.01 M NaOH}}
The total volume of solution is 1 L{\text{1 L}} . (Ka = 1.8 × 105)\left( {{{\text{K}}_a}{\text{ = 1}}{\text{.8 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}} \right)

Explanation

Solution

Buffer solution is the solution which has no effect on the pHpH of the solution on small addition of acid or base to it. We will find the pH of the buffer by using Ka{{\text{K}}_a} and the given concentration of acetic acid and sodium acetate. Then we will increase the concentration of both in addition to HCl{\text{HCl}} and NaOHNaOH .
pH = pKa + log[conjugate baseweak acid]pH{\text{ }} = {\text{ }}p{K_a}{\text{ }} + {\text{ }}\log \left[ {\dfrac{{conjugate{\text{ }}base}}{{weak{\text{ }}acid}}} \right]
Where Ka{K_a} is dissociation constant.

Complete answer:
A buffer solution containing 0.1 M0.1{\text{ M}} of CH3COOHC{H_3}COOH and 0.1 M0.1{\text{ M}} of CH3COONaC{H_3}COONa with pKa = 1.8 × 105{\text{p}}{{\text{K}}_a}{\text{ = 1}}{\text{.8 }} \times {\text{ 1}}{{\text{0}}^{ - 5}} is given. Its pHpH can be calculated as:
pH = pKa + log[conjugate baseweak acid]pH{\text{ }} = {\text{ }}p{K_a}{\text{ }} + {\text{ }}\log \left[ {\dfrac{{conjugate{\text{ }}base}}{{weak{\text{ }}acid}}} \right]
pH = pKa + log[CH3COONaCH3COOH]\Rightarrow pH{\text{ }} = {\text{ }}p{K_a}{\text{ }} + {\text{ }}\log \left[ {\dfrac{{C{H_3}COONa}}{{C{H_3}COOH}}} \right]
We know that pKa = log[Ka]p{K_a}{\text{ }} = {\text{ }} - \log \left[ {{K_a}} \right] , therefore it can be deduced as;
pH = log[Ka] + log[CH3COONaCH3COOH]\Rightarrow pH{\text{ }} = {\text{ }} - \log \left[ {{K_a}} \right]{\text{ }} + {\text{ }}\log \left[ {\dfrac{{C{H_3}COONa}}{{C{H_3}COOH}}} \right]
On substituting the values we get the result as,
pH = - log[1.8 × 105] + log[0.10.1]\Rightarrow pH{\text{ }} = {\text{ - log}}\left[ {{\text{1}}{\text{.8 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}} \right]{\text{ }} + {\text{ }}\log \left[ {\dfrac{{0.1}}{{0.1}}} \right] ____________ (1)(1)
pH = - log(1.8 × 105) + log(1)\Rightarrow pH{\text{ }} = {\text{ - log}}\left( {{\text{1}}{\text{.8 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}} \right){\text{ }} + {\text{ }}\log \left( 1 \right)
We know that, log(1)=0\log (1) = 0 , therefore,
pH = - log(1.8 × 105 )\Rightarrow pH{\text{ }} = {\text{ - log}}\left( {{\text{1}}{\text{.8 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}{\text{ }}} \right)
pH = 5 - log(1.8)\Rightarrow pH{\text{ }} = {\text{ 5 - log(1}}{\text{.8)}}
pH = 4.74\Rightarrow pH{\text{ }} = {\text{ 4}}{\text{.74}}
(i) 0.01 M HCl(i){\text{ 0}}{\text{.01 M HCl}}
Now when we add  0.01 M HCl{\text{ 0}}{\text{.01 M HCl}} then concentration acid will be (0.1+0.01)M\left( {0.1 + 0.01} \right)M . Therefore the pHpH will be calculated as:
pH = pKa + log[conjugate baseweak acid]pH{\text{ }} = {\text{ }}p{K_a}{\text{ }} + {\text{ }}\log \left[ {\dfrac{{conjugate{\text{ }}base}}{{weak{\text{ }}acid}}} \right]
pH = pKa + log[0.10.01+0.1]pH{\text{ }} = {\text{ }}p{K_a}{\text{ }} + {\text{ }}\log \left[ {\dfrac{{0.1}}{{0.01 + 0.1}}} \right]
Since 0.010.10.01 \ll 0.1 , we can write as:
0.01  0.1  0.1\Rightarrow 0.01{\text{ }} \ll {\text{ }}0.1{\text{ }} \approx {\text{ }}0.1
Thus the equation reduced as:
pH = - log[1.8 × 105] + log[0.10.1]\Rightarrow pH{\text{ }} = {\text{ - log}}\left[ {{\text{1}}{\text{.8 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}} \right]{\text{ }} + {\text{ }}\log \left[ {\dfrac{{0.1}}{{0.1}}} \right]
Which is nothing but equation (1)(1) . Therefore it pHpH will be equal to:
pH = 4.74\Rightarrow pH{\text{ }} = {\text{ 4}}{\text{.74}}
(ii) 0.01 M NaOH(ii){\text{ 0}}{\text{.01 M NaOH}}
Now the concentration of the conjugate base will be (0.1+0.01)M\left( {0.1 + 0.01} \right)M . Therefore it pHpH will be calculated as:
pH = pKa + log[conjugate baseweak acid]pH{\text{ }} = {\text{ }}p{K_a}{\text{ }} + {\text{ }}\log \left[ {\dfrac{{conjugate{\text{ }}base}}{{weak{\text{ }}acid}}} \right]
pH = pKa + log[0.01+0.10.1]pH{\text{ }} = {\text{ }}p{K_a}{\text{ }} + {\text{ }}\log \left[ {\dfrac{{0.01 + 0.1}}{{0.1}}} \right]
Since we know that 0.010.10.01 \ll 0.1 , we can write as:
pH = - log[1.8 × 105] + log[0.10.1]\Rightarrow pH{\text{ }} = {\text{ - log}}\left[ {{\text{1}}{\text{.8 }} \times {\text{ 1}}{{\text{0}}^{ - 5}}} \right]{\text{ }} + {\text{ }}\log \left[ {\dfrac{{0.1}}{{0.1}}} \right]
Which is again nothing but equation (1)(1) . Therefore it pHpH will be equal to:
pH = 4.74\Rightarrow pH{\text{ }} = {\text{ 4}}{\text{.74}}
Thus the buffer has no change in pHpH in addition to a small amount of acid or base.

Note:
It must be noted while neglecting the molar concentration, it must be lesser or greater by factor ten. Then only it can be neglected. Also a buffer solution is a buffer in addition to base or acid to it. Thus it shows a very small change in pHpH which can be neglected easily. This is the basic property of the buffer solution.