Solveeit Logo

Question

Question: Calculate the pH of a buffer solution prepared by dissolving \(\text{ 30 g }\) of \(\text{ N}{{\text...

Calculate the pH of a buffer solution prepared by dissolving  30 g \text{ 30 g } of  Na2CO3 \text{ N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ } in  500 mL \text{ 500 mL } of an aqueous solution containing  150 mL \text{ 150 mL } of 1M HCl \text{ 1M HCl }.  Ka \text{ }{{\text{K}}_{\text{a}}}\text{ } For:  HCO3 = 5.63 !!×!! 10-11[log(133150) = 0.05 ] \text{ HC}{{\text{O}}_{\text{3}}}\text{ = 5}\text{.63 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-11}}}\left[ \text{log}\left( \dfrac{\text{133}}{\text{150}} \right)\text{ = }-\text{0}\text{.05 } \right]\text{ }
(A)  8.25 \text{ }8.25\text{ }
(B)  9.19 \text{ }9.19\text{ }
(C)  10.43 \text{ }10.43\text{ }
(D)  11.56 \text{ }11.56\text{ }

Explanation

Solution

A buffer solution is one which resists changes in pH when small quantities of an acid or alkali added to it. The formula to find the pH of a buffer solution is as below, pH of buffer = pKa+log !![!! salt !!]!!  !![!! base !!]!!  \text{ pH of buffer = p}{{\text{K}}_{\text{a}}}\text{+log}\dfrac{\text{ }\\!\\![\\!\\!\text{ salt }\\!\\!]\\!\\!\text{ }}{\text{ }\\!\\![\\!\\!\text{ base }\\!\\!]\\!\\!\text{ }}\text{ }
- Where the  pKa \text{ p}{{\text{K}}_{\text{a}}}\text{ } is a negative logarithmic value of dissociation constantKa{{\text{K}}_{\text{a}}}.

Complete Solution:
First of all, let’s see how sodium carbonate will react with  HCl \text{ HCl } to adjust the concentration of hydrogen ions in the system.
- Hydrochloric acid reacts with sodium carbonate to neutralize the base as follows:  Na2CO3 + HCl  NaCl + H2CO3 \text{ N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ + HCl }\to \text{ NaCl + }{{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ }

Now, we will find the concentration of both to find pH from the formula given in the hint part. So, we can say that,
 Moles of Na2CO3 = WeightMolecular weight=mM = 30105 = 0.28 mol \text{ Moles of N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ = }\dfrac{\text{Weight}}{\text{Molecular weight}}=\dfrac{\text{m}}{\text{M}}\text{ = }\dfrac{\text{30}}{\text{105}}\text{ = 0}\text{.28 mol }
Now, we are not given the weight of the solution directly but we can find the number of its moles from its molarity by the following equation.
 Molarity = Moles of soluteVolume of solution(in L) \text{ Molarity = }\dfrac{\text{Moles of solute}}{\text{Volume of solution(in L)}}\text{ }

So, we can write that,
 Moles of HCl = Molarity !! !! (M) ×Volume of the solution (V)  Moles of HCl = 1 !! !! !!×!! (0.150 L) = 0.15 mol \begin{aligned} & \text{ Moles of HCl = Molarity }\\!\\!~\\!\\!\text{ (M) }\times \text{Volume of the solution (V}) \\\ & \text{ }\therefore \text{Moles of HCl = 1 }\\!\\!~\\!\\!\text{ }\\!\\!\times\\!\\!\text{ }\left( \text{0}\text{.150 L} \right)\text{ = 0}\text{.15 mol} \\\ \end{aligned}
So, Moles of  HCl \text{ HCl }is equal to the 0.15 mol\text{ 0}\text{.15 mol}.
So, from this, we can say that  Na2CO3 \text{ N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ } will react with all the available  HCl \text{ HCl } in the solution. Therefore, 0.15 moles of  Na2CO3 \text{ N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ } will be used.

Hence we can write:
The final concentration of  Na2CO3 \text{ N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ } after reaction:
 Moles of Na2CO3= Initial moles  number of moles reacted with HCl Moles of Na2CO3 = 0.28  0.15 = 0.13 mole \begin{aligned} & \text{ Moles of N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{= Initial moles }-\text{ number of moles reacted with HCl} \\\ & \therefore \text{Moles of N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ = }0.28\text{ }-\text{ }0.15\text{ }=\text{ }0.13\text{ mole} \\\ \end{aligned}

The concentration of  Na2CO3 \text{ N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ } can be calculated as follows:
 Concentration = Number of molesTotal volume of the solution\text{ Concentration = }\dfrac{\text{Number of moles}}{\text{Total volume of the solution}}
So, we can write that:
 Concentration of Na2CO3 = 0.13(0.500 + 0.15)M = 0.252M\text{ Concentration of N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ = }\dfrac{\text{0}\text{.13}}{\left( \text{0}\text{.500 + 0}\text{.15} \right)}\text{M = 0}\text{.252M}
And the salt ( NaCl \text{ NaCl } ) produced will also have the same number of moles of  Na2CO3 \text{ N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\text{ } used. So, we can say that,
 Concentration of salt = 0.15(0.5 + 0.15) M = 0.230M\text{ Concentration of salt = }\dfrac{\text{0}\text{.15}}{\left( \text{0}\text{.5 + 0}\text{.15} \right)}\text{ M = 0}\text{.230M}

- Now, we can use the formula of the pH of the buffer given below:
 pH of buffer = pKa+(log[Salt][Base]) \text{ pH of buffer = p}{{\text{K}}_{\text{a}}}\text{+}\left( \dfrac{\text{log}\left[ \text{Salt} \right]}{\left[ \text{Base} \right]} \right)\text{ }
 Now, pKa = log [Ka] = log [5.63 !!×!! 10-11] =10.32\text{ Now, p}{{\text{K}}_{a}}\text{ = }-\text{log }\left[ {{\text{K}}_{\text{a}}} \right]\text{ = }-\text{log }\left[ \text{5}\text{.63 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-11}}} \right]\text{ =10}\text{.32}

So, we can write equation as:
 pH = 10.32 + log[0.150.13] = 10.32 + 0.11 = 10.43\text{ pH = 10}\text{.32 + log}\left[ \dfrac{\text{0}\text{.15}}{\text{0}\text{.13}} \right]\text{ = 10}\text{.32 + 0}\text{.11 = 10}\text{.43}
Thus, the pH buffer solution prepared by dissolving 30 g \text{ 30 g } of  Na2CO3\text{ N}{{\text{a}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}} in  500 mL \text{ 500 mL } of an aqueous solution containing  150 mL \text{ 150 mL } of  1M HCl \text{ 1M HCl } is 10.43

So, the correct answer is “Option C”.

Note: According to the Henderson-Hasselbach equation, when the concentration of acid and its conjugate base is equal that is when the acid is  500/0 \text{ }50{\scriptstyle{}^{0}/{}_{0}}\text{ } dissociated in the solution, then the pH\text{pH}of the solution would be,
 pH = pKa+log !![!! salt !!]!!  !![!! base !!]!!   pH = pKa+log (1)  log 1 =0  pH = pKa \begin{aligned} & \text{ pH = p}{{\text{K}}_{\text{a}}}\text{+log}\dfrac{\text{ }\\!\\![\\!\\!\text{ salt }\\!\\!]\\!\\!\text{ }}{\text{ }\\!\\![\\!\\!\text{ base }\\!\\!]\\!\\!\text{ }}\text{ } \\\ & \text{pH = p}{{\text{K}}_{\text{a}}}\text{+log (1) }\because \text{ log 1 =0} \\\ & \therefore \text{ pH = p}{{\text{K}}_{\text{a}}} \\\ \end{aligned}