Solveeit Logo

Question

Question: Calculate the number of moles of methyl alcohol in 2 molal solutions in \(\text{5 L}\). The density ...

Calculate the number of moles of methyl alcohol in 2 molal solutions in 5 L\text{5 L}. The density of the solution is 0.981 kg.dm3 0.981\text{ kg}\text{.d}{{\text{m}}^{-3}}\text{ }. Given that, the molar mass of methyl alcohol is 32 g.mol 1 32\text{ g}\text{.mol}{{\text{ }}^{-1}}\text{ }.

Explanation

Solution

The molarity of the solution can be related to the molarity of the solution, the density of the solution, the molar mass of solute as follows,
 1m = dM  MB1000 \text{ }\dfrac{\text{1}}{\text{m}}\text{ = }\dfrac{\text{d}}{\text{M}}\text{ }-\text{ }\dfrac{{{\text{M}}_{\text{B}}}}{\text{1000}}\text{ }
Where m is the molality, M is the molarity, d is the density of the solution, and  MB \text{ }{{\text{M}}_{\text{B}}}\text{ } is the molar mass of the solute.

Complete step by step answer:
The molarity is defined as the number of moles dissolved per unit volume in liter.it is used to determine the concentrations of a solution. The molarity is expressed as follows:
 molarity (M) = no. of molesVolume in liter = nV \text{ molarity (M) = }\dfrac{\text{no}\text{. of moles}}{\text{Volume in liter}}\text{ = }\dfrac{\text{n}}{\text{V}}\text{ }

We have given the following data:
Molality (m) of the solution is 2 molal,  m = 2 molal \text{ m = 2 molal }
The volume of the solution is 5 litre,  V = 5 L \text{ V = 5 L }
The density of the solution is  d = 0.981 kg.dm3 \text{ d = }0.981\text{ kg}\text{.d}{{\text{m}}^{-3}}\text{ }
The molar mass of methyl alcohol is  M= 32 g.mol 1 \text{ M= }32\text{ g}\text{.mol}{{\text{ }}^{-1}}\text{ }
We have to find the number of moles of methyl alcohol.
The density, molarity (M), molality, and the molar mass of the solute are related as follows,
 1m = dM  MB1000 \text{ }\dfrac{\text{1}}{\text{m}}\text{ = }\dfrac{\text{d}}{\text{M}}\text{ }-\text{ }\dfrac{{{\text{M}}_{\text{B}}}}{\text{1000}}\text{ }

Where m is the molality, M is the molarity, d is the density of the solution, and  MB \text{ }{{\text{M}}_{\text{B}}}\text{ } is the molar mass of solute.
Let’s substitute the values to find the molarity of solution. We have,
 12 = 0.981M  321000  0.981M = 12 + 321000  0.981M= 10642000 M = 0.981 × 2000 1064 = 1.843 M \begin{aligned} & \text{ }\dfrac{\text{1}}{2}\text{ = }\dfrac{0.981}{\text{M}}\text{ }-\text{ }\dfrac{32}{\text{1000}}\text{ } \\\ & \Rightarrow \dfrac{0.981}{\text{M}}\text{ = }\dfrac{\text{1}}{2}\text{ + }\dfrac{32}{\text{1000}}\text{ } \\\ & \Rightarrow \dfrac{0.981}{\text{M}}=\text{ }\dfrac{1064}{2000} \\\ & \Rightarrow \text{M = }\dfrac{0.981\text{ }\times \text{ }2000\text{ }}{1064}\text{ = 1}\text{.843 M} \\\ \end{aligned}
Therefore, the molarity of the solution is equal to the 1.843 M\text{1}\text{.843 M}.
Since we know that molarity is related to the number of moles. The number of moles can be calculated as,
 molarity (M) = nV   n = M × V  n=1.83 × 5L = 9.15 moles \begin{aligned} & \text{ molarity (M) = }\dfrac{\text{n}}{\text{V}}\text{ } \\\ & \therefore \text{ n = M }\times \text{ V } \\\ & \Rightarrow \text{n=}1.83\text{ }\times \text{ 5L = 9}\text{.15 moles} \\\ \end{aligned}
Therefore, the number of moles of the methyl alcohol solutions are equal to 9.15\text{9}\text{.15}.

Note: Note that, molality and molarity are the terms to express the concentrations. For dilute solution, the molarity is equal to molality. Since the density of the solutions are close to  1.0 g/mL\text{ 1}\text{.0 g/mL} as, the volume 1 litre is nearly equal to mass 1 kilogram. For solution other than the water the molality and molarity are different and they can be related by the density relation  d = mV \text{ d = }\dfrac{\text{m}}{\text{V}}\text{ }