Solveeit Logo

Question

Question: Calculate the number of atoms of hydrogen present in \(5.6{\text{ g}}\) of urea, \({\left( {{\text{N...

Calculate the number of atoms of hydrogen present in 5.6 g5.6{\text{ g}} of urea, (NH2)2CO{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}}. Also calculate the number of atoms of N{\text{N}}, C{\text{C}} and O{\text{O}}.

Explanation

Solution

Moles is the ratio of the mass of substance in g to the molar mass of the substance in g/mol{\text{g/mol}}. The number of atoms of a compound is Avogadro’s number for 1 mole of compound. The number 6.022×10236.022 \times {10^{23}} is known as Avogadro’s number.

Formula Used: Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}

Complete step by step answer:

1. First we will calculate the number of moles of urea present in 5.6 g5.6{\text{ g}} of urea using the formula as follows:
Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
Substitute 5.6 g5.6{\text{ g}} for the mass of urea, 60 g/mol60{\text{ g/mol}} for the molar mass of urea and solve for the number of moles of urea. Thus,
Number of moles of urea=5.6 g60 g/mol{\text{Number of moles of urea}} = \dfrac{{5.6{\text{ g}}}}{{60{\text{ g/mol}}}}
Number of moles of urea=0.0933 mol{\text{Number of moles of urea}} = 0.0933{\text{ mol}}
Thus, the number of moles of urea present in 5.6 g5.6{\text{ g}} of urea are 0.0933 mol0.0933{\text{ mol}}.

2. The molecular formula for urea is (NH2)2CO{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}}. From the molecular formula we can conclude that,
1 mol (NH2)2CO=4 mol H1{\text{ mol }}{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}} = 4{\text{ mol H}},
Thus,
Moles of H=0.0933 mol urea×4 mol H1 mol urea{\text{Moles of H}} = 0.0933{\text{ mol urea}} \times \dfrac{{4{\text{ mol H}}}}{{1{\text{ mol urea}}}}
Moles of H=0.3732 mol H{\text{Moles of H}} = 0.3732{\text{ mol H}}
Thus, 0.0933 mol0.0933{\text{ mol}} urea contains 0.3732 mol0.3732{\text{ mol}} of hydrogen.
We know that 1 mol{\text{1 mol}} of hydrogen contains 6.022×10236.022 \times {10^{23}} atoms. Thus,
Number of H atoms=0.3732 mol×6.022×1023 atoms1 mol=2.247×1023 atoms{\text{Number of H atoms}} = 0.3732{\text{ mol}} \times \dfrac{{6.022 \times {{10}^{23}}{\text{ atoms}}}}{{1{\text{ mol}}}} = 2.247 \times {10^{23}}{\text{ atoms}}
Thus, 5.6 g5.6{\text{ g}} of urea contains 2.247×1023 atoms2.247 \times {10^{23}}{\text{ atoms}} of hydrogen.

3. The molecular formula for urea is (NH2)2CO{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}}. From the molecular formula we can conclude that,
1 mol (NH2)2CO=2 mol N1{\text{ mol }}{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}} = 2{\text{ mol N}},
Thus,
Moles of N=0.0933 mol urea×2 mol N1 mol urea{\text{Moles of N}} = 0.0933{\text{ mol urea}} \times \dfrac{{2{\text{ mol N}}}}{{1{\text{ mol urea}}}}
Moles of N=0.1866 mol N{\text{Moles of N}} = 0.1866{\text{ mol N}}
Thus, 0.0933 mol0.0933{\text{ mol}} urea contains 0.1866 mol0.1866{\text{ mol}} of nitrogen.
We know that 1 mol{\text{1 mol}} of nitrogen contains 6.022×10236.022 \times {10^{23}} atoms. Thus,
Number of N atoms=0.1866 mol×6.022×1023 atoms1 mol=1.123×1023 atoms{\text{Number of N atoms}} = 0.1866{\text{ mol}} \times \dfrac{{6.022 \times {{10}^{23}}{\text{ atoms}}}}{{1{\text{ mol}}}} = 1.123 \times {10^{23}}{\text{ atoms}}
Thus, 5.6 g5.6{\text{ g}} of urea contains 1.123×1023 atoms1.123 \times {10^{23}}{\text{ atoms}} of nitrogen.

4. The molecular formula for urea is (NH2)2CO{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}}. From the molecular formula we can conclude that,
1 mol (NH2)2CO=1 mol C1{\text{ mol }}{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}} = 1{\text{ mol C}},
Thus,
Moles of C=0.0933 mol urea×1 mol C1 mol urea{\text{Moles of C}} = 0.0933{\text{ mol urea}} \times \dfrac{{1{\text{ mol C}}}}{{1{\text{ mol urea}}}}
Moles of C=0.0933 mol C{\text{Moles of C}} = 0.0933{\text{ mol C}}
Thus, 0.0933 mol0.0933{\text{ mol}} urea contains 0.0933 mol0.0933{\text{ mol}} of carbon.
We know that 1 mol{\text{1 mol}} of carbon contains 6.022×10236.022 \times {10^{23}} atoms. Thus,
Number of C atoms=0.0933 mol×6.022×1023 atoms1 mol=0.561×1023 atoms{\text{Number of C atoms}} = 0.0933{\text{ mol}} \times \dfrac{{6.022 \times {{10}^{23}}{\text{ atoms}}}}{{1{\text{ mol}}}} = 0.561 \times {10^{23}}{\text{ atoms}}
Thus, 5.6 g5.6{\text{ g}} of urea contains 0.561×1023 atoms0.561 \times {10^{23}}{\text{ atoms}} of carbon.

5. The molecular formula for urea is (NH2)2CO{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}}. From the molecular formula we can conclude that,
1 mol (NH2)2CO=1 mol O1{\text{ mol }}{\left( {{\text{N}}{{\text{H}}_{\text{2}}}} \right)_{\text{2}}}{\text{CO}} = 1{\text{ mol O}}
Thus,
Moles of O=0.0933 mol urea×1 mol O1 mol urea{\text{Moles of O}} = 0.0933{\text{ mol urea}} \times \dfrac{{1{\text{ mol O}}}}{{1{\text{ mol urea}}}}
Moles of O=0.0933 mol{\text{Moles of O}} = 0.0933{\text{ mol}}
Thus, 0.0933 mol0.0933{\text{ mol}} urea contains 0.0933 mol0.0933{\text{ mol}} of oxygen.
We know that 1 mol{\text{1 mol}} of oxygen contains 6.022×10236.022 \times {10^{23}} atoms. Thus,
Number of O atoms=0.0933 mol×6.022×1023 atoms1 mol=0.561×1023 atoms{\text{Number of O atoms}} = 0.0933{\text{ mol}} \times \dfrac{{6.022 \times {{10}^{23}}{\text{ atoms}}}}{{1{\text{ mol}}}} = 0.561 \times {10^{23}}{\text{ atoms}}
Thus, 5.6 g5.6{\text{ g}} of urea contains 0.561×1023 atoms0.561 \times {10^{23}}{\text{ atoms}} of oxygen.
Thus, 5.6 g5.6{\text{ g}} of urea contains 2.247×1023 atoms2.247 \times {10^{23}}{\text{ atoms}} of hydrogen, 1.123×1023 atoms1.123 \times {10^{23}}{\text{ atoms}} of nitrogen, 0.561×1023 atoms0.561 \times {10^{23}}{\text{ atoms}} of carbon and 0.561×1023 atoms0.561 \times {10^{23}}{\text{ atoms}} of oxygen.

Note:
The Avogadro’s number gives the number of atoms, ions or molecules present in one mole of any substance. The value of Avogadro’s number is 6.022×10236.022 \times {10^{23}}.