Solveeit Logo

Question

Question: Calculate the moles of \({\text{S}}{{\text{O}}_{\text{2}}}\) produced by burning \({\text{1}}{\text{...

Calculate the moles of SO2{\text{S}}{{\text{O}}_{\text{2}}} produced by burning 1.0{\text{1}}{\text{.0}} metric ton (103 kg)\left( {{{10}^3}{\text{ kg}}} \right) of coal containing 0.05%0.05\% by mass of pyrites impurity.
(A) 8.32
(B) 4.16
(C) 12.48
(D) 2.08

Explanation

Solution

To solve this we must know the molecular formula of pyrite. The molecular formula of pyrite is FeS2{\text{Fe}}{{\text{S}}_{\text{2}}}. From the given percent by mass calculate the mass of pyrite in 1.0{\text{1}}{\text{.0}} metric ton (103 kg)\left( {{{10}^3}{\text{ kg}}} \right) of coal. Then calculate the number of moles of pyrite. Then by writing the balanced chemical equation, calculate the moles of SO2{\text{S}}{{\text{O}}_{\text{2}}} produced.

Formula Used:
Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}

Complete step-by-step solution: We know that pyrite is a mineral of sulphide. It is also known as iron sulphide. The molecular formula of pyrite i.e. iron sulphide is FeS2{\text{Fe}}{{\text{S}}_{\text{2}}}.
We are given that 1.0{\text{1}}{\text{.0}} metric ton (103 kg)\left( {{{10}^3}{\text{ kg}}} \right) of coal contains 0.05%0.05\% by mass of pyrites impurity. Thus,
Mass of pyrite in 103 kg{10^3}{\text{ kg}} coal =1000 kg×0.05100 = 1000{\text{ kg}} \times \dfrac{{0.05}}{{100}}
Mass of pyrite in 103 kg{10^3}{\text{ kg}} coal =0.5 kg=500 g = 0.5{\text{ kg}} = 500{\text{ g}}
Calculate the number of moles of FeS2{\text{Fe}}{{\text{S}}_{\text{2}}} in 500 g500{\text{ g}} of FeS2{\text{Fe}}{{\text{S}}_{\text{2}}} using the equation as follows:
Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
Substitute 500 g500{\text{ g}} for the mass of FeS2{\text{Fe}}{{\text{S}}_{\text{2}}}, 120 g/mol120{\text{ g/mol}} for the molar mass of FeS2{\text{Fe}}{{\text{S}}_{\text{2}}}. Thus,
Number of moles of FeS2=500 g120 g/mol{\text{Number of moles of Fe}}{{\text{S}}_2} = \dfrac{{500{\text{ g}}}}{{120{\text{ g/mol}}}}
Number of moles of FeS2=4.17 mol{\text{Number of moles of Fe}}{{\text{S}}_2} = 4.17{\text{ mol}}
Thus, the number of moles of FeS2{\text{Fe}}{{\text{S}}_{\text{2}}} are 4.17 mol4.17{\text{ mol}}.
The balanced chemical equation when pyrite is burned in presence of oxygen is as follows:
2FeS2+5O24SO2+2FeO{\text{2Fe}}{{\text{S}}_{\text{2}}} + {\text{5}}{{\text{O}}_{\text{2}}} \to {\text{4S}}{{\text{O}}_{\text{2}}} + {\text{2FeO}}
From the reaction stoichiometry,
1 mol FeS2=2 mol SO21{\text{ mol Fe}}{{\text{S}}_2} = 2{\text{ mol S}}{{\text{O}}_2}
Thus, 4.17 mol4.17{\text{ mol}} of FeS2{\text{Fe}}{{\text{S}}_{\text{2}}} will produce,
Number of moles of SO2=4.17 mol FeS2×2 mol SO21 mol FeS2{\text{Number of moles of S}}{{\text{O}}_2} = 4.17{\text{ mol Fe}}{{\text{S}}_2} \times \dfrac{{2{\text{ mol S}}{{\text{O}}_2}}}{{{\text{1 mol Fe}}{{\text{S}}_2}}}
Number of moles of SO2=8.32 mol{\text{Number of moles of S}}{{\text{O}}_2} = 8.32{\text{ mol}}
Thus, the moles of SO2{\text{S}}{{\text{O}}_{\text{2}}} produced by burning 1.0{\text{1}}{\text{.0}} metric ton (103 kg)\left( {{{10}^3}{\text{ kg}}} \right) of coal containing 0.05%0.05\% by mass of pyrites impurity are 8.32 mol8.32{\text{ mol}}.

Thus, the correct option is (A) 8.32.

Note: Remember to write the correct balanced equation for the reaction in which pyrite is burned in presence of oxygen. Incorrect balanced chemical equations will lead to incorrect stoichiometry which leads to incorrect answers.