Solveeit Logo

Question

Question: Calculate the mķnimum value 'v' with which q should be projected so that it just reaches the centre ...

Calculate the mķnimum value 'v' with which q should be projected so that it just reaches the centre of the ring–

A

v = kQqmR(22)\sqrt{\frac{kQq}{mR}(2 - \sqrt{2})}

B

v = kQqmR(22)\sqrt{\frac{kQq}{mR}(\sqrt{2} - 2)}

C

v = kQqmR\sqrt{\frac{kQq}{mR}}

D

v = kQq2mR(12)\sqrt{\frac{kQq}{\sqrt{2}mR}(1 - \sqrt{2})}

Answer

v = kQqmR(22)\sqrt{\frac{kQq}{mR}(2 - \sqrt{2})}

Explanation

Solution

Ui + Ki = Uf + Kf

+ 12\frac { 1 } { 2 }mv2 = + O

mv2 =

v = 2kQqmR(112)\sqrt { \frac { 2 \mathrm { kQq } } { \mathrm { mR } } \left( 1 - \frac { 1 } { \sqrt { 2 } } \right) }

v = kQqmR(22)\sqrt { \frac { \mathrm { kQq } } { \mathrm { mR } } ( 2 - \sqrt { 2 } ) }