Solveeit Logo

Question

Question: Calculate the Millerindices of crystal planes which cut through the crystal axes at (i) (2*a*, 3*b*,...

Calculate the Millerindices of crystal planes which cut through the crystal axes at (i) (2a, 3b, c), (ii) (,\infty,2b, c )

A

3, 2, 6 and 0, 1, 2

B

4, 2, 6 and 0, 2, 1

C

6, 2, 3 and 0, 0, 1

D

7, 2, 3 and 1, 1, 1

Answer

3, 2, 6 and 0, 1, 2

Explanation

Solution

(i) x y z

2a 3b c Intercepts

2aa\frac{2a}{a} 3bb\frac{3b}{b} cc\frac{c}{c} Lattice parameters

12\frac{1}{2} 13\frac{1}{3} 11\frac{1}{1} Reciprocals

3 2 6 Multiplying by LCM (6)

Hence, the Miller indices are (3, 2, 6)

(ii) x y z

\infty 2b2b cc Intercepts

a\frac{\infty}{a} 2bb\frac{2b}{b} cc\frac{c}{c} Lattice parameters

1\frac{1}{\infty} 12\frac{1}{2} 11\frac{1}{1} Reciprocals

0 1 2 Multiplying by LCM (2)

Hence, the Miller indices are (0, 1, 2).