Solveeit Logo

Question

Question: Calculate the mass of \({\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}\) required to prepare...

Calculate the mass of Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}} required to prepare 250  ml250\;{\rm{ml}} of 0.5  N0.5\;{\rm{N}}solution.

Explanation

Solution

Normality is defined as the number of gram or mole equivalents of solute present in one litre of a solution. It can be calculated by dividing gram equivalents of solute present in one litre of solution. Here, we have to use formula of normality, that is Normality=Gram  equivalents  of  soluteVolume  of  solution  in  litre{\rm{Normality}} = \dfrac{{{\rm{Gram}}\;{\rm{equivalents}}\;{\rm{of}}\;{\rm{solute}}}}{{{\rm{Volume}}\;{\rm{of}}\;{\rm{solution}}\;{\rm{in}}\;{\rm{litre}}}}

Complete step by step answer:
To calculate normality, we need the gram equivalents of solute, that is, Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}.
The formula to calculate gram equivalent of solute is,
Gram  equivalent=Weightequivalent  weight{\rm{Gram}}\;{\rm{equivalent}} = \dfrac{{{\rm{Weight}}}}{{{\rm{equivalent}}\;{\rm{weight}}}} …… (1)
Now, we calculate the equivalent weight of solute.
Equivalent  weight=Molecular  mass  ofsolutenfactor{\rm{Equivalent}}\;{\rm{weight}} = \dfrac{{{\rm{Molecular}}\;{\rm{mass}}\;{\rm{of}}\,{\rm{solute}}}}{{n - {\rm{factor}}}}
So, we need molecular mass and n-factor of solute.
First we calculate the molecular mass of Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}.
Molecular  mass  of  Na2CO3=2×23+12+3×16 =46+12+48 =106  gmol1\begin{array}{c}{\rm{Molecular}}\;{\rm{mass}}\;{\rm{of}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}} = 2 \times 23 + 12 + 3 \times 16\\\ = 46 + 12 + 48\\\ = 106\;{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}\end{array}
Now, we calculate the n-factor ofNa2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}. The n-factor is defined as the change in oxidation number.
The dissociation of Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}} is written as follows:
Na2CO32Na++CO32{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}} \to 2{\rm{N}}{{\rm{a}}^ + } + {\rm{C}}{{\rm{O}}_{\rm{3}}}^{2 - }.
No n-factor forNa2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}is =20=2 = 2 - 0 = 2.
Now, we use the n-factor and molecular mass of to Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}calculate equivalent mass of Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}.
Equivalent  mass  of  Na2CO3=Molecular  mass  of  Na2CO3nfactorof  Na2CO3 =106  g  mol12 =53  equivmol1\begin{array}{c}{\rm{Equivalent}}\;{\rm{mass}}\;{\rm{of}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}} = \dfrac{{{\rm{Molecular}}\;{\rm{mass}}\;{\rm{of}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}}}{{{\rm{n}} - {\rm{factor}}\,{\rm{of}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}}}\\\ = \dfrac{{106\;{\rm{g}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}}}{2}\\\ = 53\;{\rm{equiv}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}\end{array}

So, equivalent mass of Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}is 53  equivmol153\;{\rm{equiv}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}. Now, we have to use equation (1) to calculate the gram equivalent of Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}} .
Gram  equivalent=Weightequivalent  weight =Weightof  Na2CO3equivalent  weight  Na2CO3   =Weightof  Na2CO353  g  equiv1\begin{array}{c}{\rm{Gram}}\;{\rm{equivalent}} = \dfrac{{{\rm{Weight}}}}{{{\rm{equivalent}}\;{\rm{weight}}}}\\\ = \dfrac{{{\rm{Weight}}\,{\rm{of}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}}}{{{\rm{equivalent}}\;{\rm{weight}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}\;}}\\\ = \dfrac{{{\rm{Weight}}\,{\rm{of}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}}}{{53\;{\rm{g}}\;{\rm{equi}}{{\rm{v}}^{ - 1}}}}\end{array}
Now, we have to use the formula of normality to calculate the mass of Na2CO3{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}. The volume of the solution is given as 250 ml and normality is 0.5 N.
Normality=Gram  equivalents  of  soluteVolume  of  solution  in  litre\0.5  g  equivL1(N)=Weightof  Na2CO353  g  equiv1×1000250LWeightof  Na2CO3=0.5  ×53×2501000 =6.625  g\begin{array}{c}{\rm{Normality}} = \dfrac{{{\rm{Gram}}\;{\rm{equivalents}}\;{\rm{of}}\;{\rm{solute}}}}{{{\rm{Volume}}\;{\rm{of}}\;{\rm{solution}}\;{\rm{in}}\;{\rm{litre}}}}\\\0.5\;{\rm{g}}\;{\rm{equiv}}\,{{\rm{L}}^{ - 1}}\left( {\rm{N}} \right) = \dfrac{{{\rm{Weight}}\,{\rm{of}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}}}{{53\;{\rm{g}}\;{\rm{equi}}{{\rm{v}}^{ - 1}}}} \times \dfrac{{1000}}{{250}}{\rm{L}}\\\\{\rm{Weight}}\,{\rm{of}}\;{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}} = \dfrac{{0.5\; \times 53 \times 250}}{{1000}}\\\ = 6.625\;{\rm{g}}\end{array}

Hence, the mass of sodium carbonate needed to prepare 250 ml of 0.5 N solution is 6.625 g.

Note:
Molarity is the moles of solute present in one litre of solution and normality is the gram equivalents of solute present in one litre of solution. For some monovalent compounds, like HCl, molarity and normality is the same as n-factor in such compounds.