Solveeit Logo

Question

Question: Calculate the mass of \({{C}^{14}}\) (half-life = 5720 years) atoms which give \(3.7\times {{10}^{7}...

Calculate the mass of C14{{C}^{14}} (half-life = 5720 years) atoms which give 3.7×1073.7\times {{10}^{7}} disintegrations per second.

Explanation

Solution

We know that,t12=0.693λ{{t}_{\dfrac{1}{2}}} =\frac{0.693}{\lambda }
Where t12{{t}_{\dfrac{1}{2}}} is the half-life period and λ\lambda is the disintegration constant
The rate of disintegration,dNdt=λN\dfrac{-dN}{dt} =\lambda N

Complete step by step answer:
In the question we are provided with the information of the half-life of C14{{C}^{14}} and also the rate of disintegration of C14{{C}^{14}} and we have to find the mass of the C14{{C}^{14}} that is undergoing disintegration at the given rate.
- Half-life is the time period required for the substance to reduce to its half the amount of the initial concentration.
Now let’s solve the given problem.
Let’s assume the mass of C14{{C}^{14}} atoms be m grams.
- Now we should know the, number of atoms present in m grams of C14{{C}^{14}},
So we use the formulae,
Number of atoms=Mass of the substanceMolecularmass !!×!! NA\text{Number of atoms=}\dfrac{\text{Mass of the substance}}{\text{Molecular}\,\text{mass}}\text{ }\\!\\!\times\\!\\!\text{ }{{\text{N}}_{\text{A}}}
NA=6.022×1023{{N}_{A}}=6.022\times {{10}^{23}}=Avogadro number
NumberofatomsinC14=m14×6.022×1023=NNumber\,of\,atoms\,in\,{{C}_{14}}=\dfrac{m}{14}\times 6.022\times {{10}^{23}}=N
- The half-life equation is,
t12=0.693λ{{t}_{\dfrac{1}{2}}}=\dfrac{0.693}{\lambda }
The t12{{t}_{\dfrac{1}{2}}} is the half-life period and λ\lambda is the disintegration constant
We alter the equation and write for disintegration constant, λ\lambda
λ=0.693t12\lambda =\dfrac{0.693}{{{t}_{\dfrac{1}{2}}}}
- The given t12{{t}_{\dfrac{1}{2}}} = 5720 years and we have to convert the given t12{{t}_{\dfrac{1}{2}}}value to seconds and substitute the values in the equation,
λ=0.6935720×365×24×60×60\lambda =\dfrac{0.693}{5720\times 365\times 24\times 60\times 60}
λ=3.84×1012sec\lambda = 3.84\times {{10}^{-12}}\sec

We know that the, dNdt=λN\dfrac{-dN}{dt}=\lambda N
N = number of atoms
dNdt\dfrac{-dN}{dt} is the disintegration constant
dNdt\dfrac{-dN}{dt} = 3.7×1073.7\times {{10}^{7}}sec
λ=3.84×1012sec\lambda =3.84\times {{10}^{-12}}\sec
NumberofatomsinC14=m14×6.022×1023=NNumber\,of\,atoms\,in\,{{C}_{14}}=\dfrac{m}{14}\times 6.022\times {{10}^{23}}=N
Substitute all these values in the equation of, rate of disintegration,
3.7×107=3.84×1012×6.022×1023×m143.7\times {{10}^{7}}=\dfrac{3.84\times {{10}^{-12}}\times 6.022\times {{10}^{23}}\times m}{14}
3.7×107×14=3.84×1012×6.022×1023×m3.7\times {{10}^{7}}\times 14=3.84\times {{10}^{-12}}\times 6.022\times {{10}^{23}}\times m
m=3.7×107×143.84×1012×6.022×1023gm=\dfrac{3.7\times {{10}^{7}}\times 14}{3.84\times {{10}^{-12}}\times 6.022\times {{10}^{23}}}g
m=2.2636×104gm=2.2636\times {{10}^{-4}}g

Note: We should convert the t12{{t}_{\dfrac{1}{2}}}into seconds since the disintegration constant is given in seconds and the t12{{t}_{\dfrac{1}{2}}} is given in seconds.
- For avoiding all these steps, the problem may be solved by one step, if we know the sub-equations of all the terms,
dNdt=λN=0.693t12×WM×NA\dfrac{-dN}{dt}=\lambda N=\dfrac{0.693}{{{t}_{\dfrac{1}{2}}}}\times \dfrac{W}{M}\times {{N}_{A}}
Where W is the weight or mass of the substance is the molecular mass.