Solveeit Logo

Question

Chemistry Question on Solutions

Calculate the mass of a non-volatile solute (molar mass 40gmol140 g mol^{–1}) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%80\%

Answer

The correct answer is: 8g8 g
Let the vapour pressure of pure octane be p1o.p^o_1.
Then, the vapour pressure of the octane after dissolving the non-volatile solute is 80100p1o=0.8p1o.\frac{80}{100} p^o_1 = 0.8p^o_1.
Molar mass of solute, M2=40gmol1M_2 = 40 g mol^{- 1}
Mass of octane, w1=114gw_1 = 114 g
Molar mass of octane, (C8H18),M1=8×12+18×1=114gmol1(C_8H_{18}), M_1 = 8 × 12 + 18 × 1 = 114 g mol^{- 1}
Applying the relation,
(p1op1)p1o=(w2×M1)(M2×w1)\frac{ (p^o_1-p_1)}{ p^o_1}= \frac{(w_2\times M_1)}{(M_2 \times w_1)}
(p1o0.8p1)p1o=(w2×114)(40×114)⇒ \frac{(p^o_1-0.8p_1)}{ p^o_1}= \frac{(w_2\times 114)}{(40 \times 114)}
0.2p1op1o=w240⇒\frac{0.2p^o_1}{p^o_1} = \frac{w_2}{40}
0.2=w240⇒0.2= \frac{w_2}{40}
w2=8g⇒w_2 = 8g
Hence, the required mass of the solute is 8g8 g.