Question
Question: Calculate the mass of \(14C\) (half life period = 5720 years) atoms which give \(3.7 \times 10^{7}\)...
Calculate the mass of 14C (half life period = 5720 years) atoms which give 3.7×107 disintegrations per second
A
2.34×10−4g
B
2.24×10−4g
C
2.64×10−4g
D
2.64×10−2g
Answer
2.24×10−4g
Explanation
Solution
Let the mass of 14C atoms be m g
Number of atoms in m g of14C=14m×6.02×1023
λ=Half life0.693=5720×365×24×60×600.693=3.84×10−12sec−1We know that −dtdNt=λ⋅Nt
i.e. Rate of disintegration =λ×No. of atoms
}{= \frac{3.84 \times 10^{- 12} \times m \times 6.02 \times 10^{23}}{14} = 2.24 \times 10^{- 4}g}$$