Solveeit Logo

Question

Question: Calculate the freezing point of an aqueous solution containing \(10.5{\text{ g}}\) of magnesium brom...

Calculate the freezing point of an aqueous solution containing 10.5 g10.5{\text{ g}} of magnesium bromide in 200 g200{\text{ g}} of water, assuming complete dissociation of magnesium bromide.
(Molar mass of magnesium bromide =184 g mol1 = 184{\text{ g mo}}{{\text{l}}^{ - 1}}, Kf{{\text{K}}_{\text{f}}} for water =1.86 K kg moll1 = 1.86{\text{ K kg mol}}{{\text{l}}^{ - 1}}).

Explanation

Solution

To solve this we must know that the freezing point of a pure solvent decreases when a non-volatile solute is added to it. This decrease in the freezing point is known as the depression in freezing point. Thus, when magnesium bromide is added to water the freezing point of water decreases.

Formulae Used:

  1. ΔTf=Kf×m\Delta {T_f} = {K_f} \times m
  2. Molality(m)=Number of moles of solute(mol)Weight of solvent(kg){\text{Molality}}\left( {\text{m}} \right) = \dfrac{{{\text{Number of moles of solute}}\left( {{\text{mol}}} \right)}}{{{\text{Weight of solvent}}\left( {{\text{kg}}} \right)}}
  3. Tf=T0ΔTf{T_f} = {T_0} - \Delta {T_f}

Complete step by step solution:
The equation for the depression in freezing point of a solution is,
ΔTf=Kf×m\Delta {T_f} = {K_f} \times m
Where, ΔTf\Delta {T_f} is the depression in freezing point,
Kf{K_f} is the constant of the depression in freezing point,
mm is the molality of the solution.

We know that molality is the number of moles of solute dissolved per kilogram of solvent. The mathematical expression for molality is as follows:
Molality(m)=Number of moles of solute(mol)Weight of solvent(kg){\text{Molality}}\left( {\text{m}} \right) = \dfrac{{{\text{Number of moles of solute}}\left( {{\text{mol}}} \right)}}{{{\text{Weight of solvent}}\left( {{\text{kg}}} \right)}}
We know that the number of moles is the ratio of mass to the molar mass. Thus,
Molality(m)=Mass(g)Molar mass(g/mol)×1Weight of solvent(kg){\text{Molality}}\left( {\text{m}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}} \times \dfrac{{\text{1}}}{{{\text{Weight of solvent}}\left( {{\text{kg}}} \right)}}
Thus, the equation for the depression in freezing point of a solution is,
ΔTf=Kf×Mass(g)Molar mass(g/mol)×1Weight of solvent(kg)\Delta {T_f} = {K_f} \times \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}} \times \dfrac{{\text{1}}}{{{\text{Weight of solvent}}\left( {{\text{kg}}} \right)}}
Substitute 1.86 K kg mol11.86{\text{ K kg mo}}{{\text{l}}^{ - 1}} for the Kf{{\text{K}}_{\text{f}}} of water, 10.5 g10.5{\text{ g}} for the mass of solute i.e. magnesium bromide, 184 g mol1184{\text{ g mo}}{{\text{l}}^{ - 1}} for the molar mass of magnesium bromide, 200 g=200×103 kg200{\text{ g}} = 200 \times {10^{ - 3}}{\text{ kg}} for the mass of solvent i.e. water. Thus, ΔTf=1.86 K kg mol1×10.5 g184 g mol1×1200×103 kg\Delta {T_f} = 1.86{\text{ K kg mo}}{{\text{l}}^{ - 1}} \times \dfrac{{10.5{\text{ g}}}}{{184{\text{ g mo}}{{\text{l}}^{ - 1}}}} \times \dfrac{{\text{1}}}{{200 \times {{10}^{ - 3}}{\text{ kg}}}}
ΔTf=0.530 K\Delta {T_f} = 0.530{\text{ K}}
Thus, the depression in freezing point is 0.530 K0.530{\text{ K}}.
Now, calculate the freezing point using the equation as follows:
Tf=T0ΔTf{T_f} = {T_0} - \Delta {T_f}
Where, Tf{T_f} is the freezing point,
T0{T_0} is the temperature at 0C{0^ \circ }{\text{C}}
ΔTf\Delta {T_f} is the depression in freezing point.
Substitute 273 K273{\text{ K}} for the temperature at 0C{0^ \circ }{\text{C}}, 0.530 K0.530{\text{ K}} for the depression in freezing point.
Thus,
Tf=(2730.530) K{T_f} = \left( {273 - 0.530} \right){\text{ K}}
Tf=272.47 K{T_f} = 272.47{\text{ K}}

Thus, the freezing point of an aqueous solution containing 10.5 g10.5{\text{ g}} of magnesium bromide in 200 g200{\text{ g}} of water is 272.47 K272.47{\text{ K}}.

Note: The freezing point of a pure solvent decreases when any non-volatile solute is added to it. This is known as depression in freezing point. The freezing point of a pure solvent is always higher than that of its solution.This is one of the colligative properties ,those properties which depend upon the number of molecules present in the solution.