Solveeit Logo

Question

Question: Calculate the equilibrium constant for the reaction, \(2F{e^{2 + }} + 3{I^ - } \rightleftharpoons 2F...

Calculate the equilibrium constant for the reaction, 2Fe2++3I2Fe3++I32F{e^{2 + }} + 3{I^ - } \rightleftharpoons 2F{e^{3 + }} + {I_3}^ - .The standard reduction potential in acidic conditions are 0.77V0.77\,V and 0.54V0.54\, V respectively for Fe3+/Fe2+F{e^{3 + }}/F{e^{2 + }} and I3/I{I^{3 - }}/{I^ - } couples.

Explanation

Solution

Here in this question we will use the concepts of Nernst equation which relates the reduction potential of an electrochemical reaction for half-cell or full cell reaction to the standard electrode potential, temperature and activities.

Complete answer:
First let us discuss about nernst equation and its application:
The Nernst equation can be written as:
For a general electrochemical reaction of the type:
aA+bBcC+dDaA + bB \to cC + dD
E=E0RTnFlnQE = {E^0} - \dfrac{{RT}}{{nF}}\ln Q
E=E0RTnFln[C]c[D]d[A]a[B]b\Rightarrow E = {E^0} - \dfrac{{RT}}{{nF}}\ln \dfrac{{{{[C]}^c}{{[D]}^d}}}{{{{[A]}^a}{{[B]}^b}^{}}}
Kc=5.88×107{K_c} = 5.88 \times {10^7}
Now we know that at equilibrium E=0E = 0 and [C]c[D]d[A]a[B]b=Kc\dfrac{{{{[C]}^c}{{[D]}^d}}}{{{{[A]}^a}{{[B]}^b}^{}}} = {K_c}
So we get E0=2.303RTnFlogKc{E^0} = \dfrac{{2.303RT}}{{nF}}\log {K_c}
Let’s solve the problem for given data:
2Fe2++3I2Fe3++I32F{e^{2 + }} + 3{I^ - } \rightleftharpoons 2F{e^{3 + }} + {I_3}^ - ,Fe3+/Fe2+F{e^{3 + }}/F{e^{2 + }}=0.77V0.77\,V, I3/I{I^{3 - }}/{I^ - }=0.54V
Given reduction potential of Fe3+F{e^{3 + }} to Fe2+F{e^{2 + }} = 0.77V0.77\,V, oxidation potential = -0.77V0.77\,V and I{I^ - } to I3{I^{3 - }}=0.54V0.54\,V i.e oxidation potential = -0.54V0.54\,V.
Cell potential =

( - 0.54) - ( - 0.77) \\\\$$ $$ = 0.23V

Now we know that, E0=0.05912log10Kc{E^0} = \dfrac{{0.0591}}{2}{\log _{10}}{K_c}
0.23×2=0.0591log10Kc\Rightarrow 0.23 \times 2 = 0.0591{\log _{10}}{K_c}
7.77=log10Kc\Rightarrow7.77 = {\log _{10}}{K_c}
Kc=antilog(7.77)\Rightarrow{K_c} = anti\log (7.77)
Kc=5.88×107\Rightarrow{K_c} = 5.88 \times {10^7}

Note:
We have to take care while calculating the electrode potential of a full cell. We have to subtract their oxidation potential according to the given reaction and we can also use the other method to calculate the potential of the cell.