Solveeit Logo

Question

Question: Calculate the emf of the cell in which of the following reaction: \[{\text{Ni}}\left( {\text{s}} \...

Calculate the emf of the cell in which of the following reaction:
Ni(s) + 2Ag + (0.002M)Ni2+(0.160M) + 2Ag(s){\text{Ni}}\left( {\text{s}} \right)\,{\text{ + }}\,\,{\text{2A}}{{\text{g}}^{\text{ + }}}\left( {0.002\,{\text{M}}} \right)\, \to {\text{N}}{{\text{i}}^{2 + }}\left( {0.160\,{\text{M}}} \right){\text{ + }}\,\,{\text{2Ag}}\,\left( {\text{s}} \right)\,\,
(Given that Ecell=1.05V{\text{E}}_{{\text{cell}}}^ \circ \, = \,1.05\,{\text{V}})
A. 0.3V0.3\,{\text{V}}
B. 0.91V{\text{0}}{\text{.91}}\,{\text{V}}
C. 0.62V{\text{0}}{\text{.62}}\,{\text{V}}
D. 0.34V{\text{0}}{\text{.34}}\,{\text{V}}

Explanation

Solution

We can calculate the emf of the cell by using Nernst equation. Nernst equation tells the relation in electromotive force (emf) and concentration of oxidised and reduced species.

Formula used: Ecell = Ecell0.0591nlog[oxidized][reduced]{{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,{\text{E}}_{{\text{cell}}}^ \circ \, - \dfrac{{0.0591}}{{\text{n}}}\log \,\dfrac{{\left[ {{\text{oxidized}}} \right]}}{{\left[ {{\text{reduced}}} \right]}}

Complete step-by-step answer:
The Nernst equation is used to determine the electromotive force (emf) of a cell. The Nernst is represented as follows:
Ecell = Ecell0.0591nlog[reduced][oxidized]{{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,{\text{E}}_{{\text{cell}}}^ \circ \, - \dfrac{{0.0591}}{{\text{n}}}\log \,\dfrac{{\left[ {{\text{reduced}}} \right]}}{{\left[ {{\text{oxidized}}} \right]}}
Ecell{{\text{E}}_{{\text{cell}}\,}} is the electromotive force of the cell.
Ecell{\text{E}}_{{\text{cell}}}^ \circ \,is the standard reduction potential of the cell.
n{\text{n}}is the number of electrons involved in a redox reaction.

We can write the half-cell reaction to determine the oxidised and reduced species.
The half-cell reaction are as follows:
Oxidation reaction:Ni(s)Ni2+(0.160M) + 2e{\text{Ni}}\left( {\text{s}} \right)\, \to {\text{N}}{{\text{i}}^{2 + }}\left( {0.160\,{\text{M}}} \right){\text{ + }}\,\,{\text{2}}{{\text{e}}^ - }\,
Nickel is releasing two electrons to form nickel ions.
Reduction reaction: 2Ag + (0.002M) + 2e2Ag(s){\text{2A}}{{\text{g}}^{\text{ + }}}\left( {0.002\,{\text{M}}} \right)\,{\text{ + }}\,\,{\text{2}}{{\text{e}}^ - }\, \to {\text{2Ag}}\,\left( {\text{s}} \right)
Silver ions are accepting two electrons to form silver metal.
So, the number of electrons exchanged during the reaction is22.
So, the Nernst equation for the nickel and silver redox reaction is as follows:
Ecell = Ecell0.0591nlog[Ni2+][Ag+]2{{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,{\text{E}}_{{\text{cell}}}^ \circ \, - \dfrac{{0.0591}}{{\text{n}}}\log \,\dfrac{{\left[ {{\text{N}}{{\text{i}}^{2 + }}} \right]}}{{{{\left[ {{\text{A}}{{\text{g}}^ + }} \right]}^2}}}

On substituting 1.05V1.05\,{\text{V}} forEcell{\text{E}}_{{\text{cell}}}^ \circ \,, 22for number of electrons, 0.160M0.160\,{\text{M}} for the concentration of nickel ion and 0.002M0.002\,{\text{M}}for the concentration of silver ion.
Ecell = 1.05V0.05912log[0.160][0.002]2\Rightarrow {{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,1.05\,{\text{V}}\, - \dfrac{{0.0591}}{2}\log \,\dfrac{{\left[ {0.160} \right]}}{{{{\left[ {0.002} \right]}^2}}}
Ecell = 1.05V0.05912log[0.160][4×106]\Rightarrow {{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,1.05\,{\text{V}}\, - \dfrac{{0.0591}}{2}\log \,\dfrac{{\left[ {0.160} \right]}}{{\left[ {4 \times {{10}^{ - 6}}} \right]}}
Ecell = 1.05V0.05912log40000\Rightarrow {{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,1.05\,{\text{V}}\, - \dfrac{{0.0591}}{2}\log \,40000
Ecell = 1.05V0.05912×4.60\Rightarrow {{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,1.05\,{\text{V}}\, - \dfrac{{0.0591}}{2} \times 4.60
Ecell = 1.05V0.14\Rightarrow {{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,1.05\,{\text{V}} - 0.14
Ecell = 0.91V\Rightarrow {{\text{E}}_{{\text{cell}}\,}}{\text{ = }}\,0.91\,{\text{V}}
So, the emf of the cell is 0.91V0.91\,{\text{V}}.

Therefore, option (B) 0.91V0.91\,{\text{V}}, is correct.

Note: The stoichiometry does not affect standard reduction potential. Standard reduction potential Ecell{\text{E}}_{{\text{cell}}}^ \circ \,is calculated by subtracting the reduction potential of anode from reduction potential of cathode.