Solveeit Logo

Question

Question: Calculate the degree of ionization and \[\text{ pH }\] of \[\text{ 0}\text{.05 M }\] the solution of...

Calculate the degree of ionization and  pH \text{ pH } of  0.05 M \text{ 0}\text{.05 M } the solution of a weak base having the ionization constant  (KC) \text{ }\left( {{\text{K}}_{\text{C}}} \right)\text{ } is 1.77 × 105 \text{ }1.77\text{ }\times \text{ }{{10}^{-5}}\text{ } . Also, calculate the ionization constant of the conjugate acid of this base.

Explanation

Solution

According to the Arrhenius concept, the base is the substance that dissociates into hydroxide ions. Here, the reaction of the dissociation of the base is given as:
 BOH  B+ + OH\text{ BOH }\rightleftharpoons \text{ }{{\text{B}}^{\text{+}}}\text{ + O}{{\text{H}}^{-}}
The equilibrium constant or the  Kb \text{ }{{\text{K}}_{\text{b}}}\text{ }is related to the concentration of the solution and the degree of dissociation. It is the extent to which the base dissociates into the solution. The sum of pOH\text{pOH} and pH\text{pH} is equal to the 14.

Complete step by step answer:
Let’s consider a weak monobasic base  BOH \text{ BOH }, its dissociation by the Arrhenius acid-base concept may be represented by the following equation:
 BOH  B+ + OH\text{ BOH }\rightleftharpoons \text{ }{{\text{B}}^{\text{+}}}\text{ + O}{{\text{H}}^{-}}
The equilibrium constant or the dissociation constant  Kb \text{ }{{\text{K}}_{\text{b}}}\text{ }of the weak base is represented as:
 Kb=[B+][OH][BOH] \text{ }{{\text{K}}_{\text{b}}}\text{=}\dfrac{\left[ {{\text{B}}^{\text{+}}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]}{\left[ \text{BOH} \right]}\text{ }
If the initial concentration of the weak base is ‘c’ moles per litre and if  α\text{ }\alpha is the degree of dissociation, then the weak monobasic base dissociates as follows:

{} & \text{BOH} & \rightleftharpoons & {{\text{B}}^{+}} & \+ & \text{O}{{\text{H}}^{-}} \\\ \text{Initial conc}\text{.} & c & {} & 0 & {} & 0 \\\ \text{Final conc}\text{.} & c(1-\alpha ) & {} & c\alpha & {} & c\alpha \\\ \end{matrix}$$ The dissociation constant $\text{ }{{\text{K}}_{\text{b}}}\text{ }$of the weak base is given as: $\text{ }{{\text{K}}_{\text{b}}}\text{ = }\dfrac{c\alpha \text{ }\times \text{ }c\alpha \text{ }}{c(1-\alpha )}=\text{ }\dfrac{c{{\alpha }^{2}}}{(1-\alpha )}$ Since, $\alpha \ll 1$ , the dissociation constant of a weak base is rewritten as : $\text{ }{{\text{K}}_{\text{b}}}\text{ = }c{{\alpha }^{2}}$ Let’s rearrange the equation concerning the dissociation constant we get, $$\text{ }\alpha =\sqrt{\dfrac{{{\text{K}}_{\text{b}}}}{c}}$$ We have given the following data: The dissociation constant of a weak base,${{\text{K}}_{\text{b}}}\text{ = }1.77\text{ }\times \text{ }{{10}^{-5}}\text{ }$ The concentration of weak base solution,$\text{ 0}\text{.05 M }$ To find: a) Degree of ionisation b) $$\text{ pH }$$Of solution c) Ionisation constant of the conjugate acid a) Lets, calculate the value of the degree of dissociation, $$\text{ }\alpha =\sqrt{\dfrac{{{\text{K}}_{\text{b}}}}{c}}\text{ = }\sqrt{\dfrac{1.77\times {{10}^{-5}}}{0.05}}\text{ = 0}\text{.0188}$$ Therefore, the degree of dissociation $(\alpha )$ is $$\text{0}\text{.0188}$$ or $$\text{ 1}\text{.88}\times \text{1}{{\text{0}}^{\text{-2}}}$$ . b) Now, we are interested to find out $$\text{ pH }$$about the solution. The concentration of hydroxide ions is given as: $\left[ \text{O}{{\text{H}}^{-1}} \right]=\text{ c}\alpha \text{ }$ Let’s calculate the concentration of hydroxide ions. $\left[ \text{O}{{\text{H}}^{-1}} \right]=\text{ c}\alpha \text{ = }\left( 0.05\text{ }\times \text{ 1}\text{.8}\times \text{1}{{\text{0}}^{\text{-2}}} \right)\text{ = 9}\text{.0}\times \text{1}{{\text{0}}^{\text{-4}}}$ We know that, $\text{pOH = }-\log \left[ \text{O}{{\text{H}}^{-}} \right]$ Therefore, the $\text{pOH}$ is $-\log \left[ 9.0\times {{10}^{-4}} \right]=\text{ 3}\text{.04}$ The sum of $\text{pOH}$ and $\text{pH}$ is equal to the 14. Therefore, the $\text{pH}$ of the solution is, $\begin{aligned} & 14=\text{pH + pOH} \\\ & 14=\text{pH + 3}\text{.04} \\\ & \text{pH}=\text{14 }-\text{ 3}\text{.04} \\\ & \therefore \text{pH = 10}\text{.95} \\\ \end{aligned}$ So, $\text{pH}$ of the weak base is$\text{10}\text{.95}$. c) Let's calculate the ionisation constant of the conjugate acid of a weak base. The product of the dissociation constant of a base and its conjugate acid is always equal to the dissociation constant of water ${{\text{K}}_{\text{w}}}$ . Thus , on applying this we can calculate the ionisation constant of conjugate acid ${{\text{K}}_{\text{a}}}$. $$\begin{aligned} & {{\text{K}}_{\text{w}}}\text{ = }{{\text{K}}_{\text{base}}}\text{ }\\!\\!\times\\!\\!\text{ }{{\text{K}}_{\text{conjugate acid}}} \\\ & \Rightarrow {{\text{K}}_{\text{conjugate acid}}}\text{ = }\dfrac{{{\text{K}}_{\text{w}}}\text{ }}{{{\text{K}}_{\text{base}}}} \\\ \end{aligned}$$ Let’s substitute the values, $${{\text{K}}_{\text{conjugate acid}}}\text{ = }\dfrac{{{\text{K}}_{\text{w}}}\text{ }}{{{\text{K}}_{\text{base}}}}\text{ = }\dfrac{{{10}^{-14}}}{1.77\times {{10}^{-5}}}\text{ = 5}\text{.65 }\times {{10}^{-10}}$$ Thus, the ionisation constant of the conjugate acid is equal to the$$\text{5}\text{.65 }\times {{10}^{-10}}$$. **Hence, a) The degree of dissociation $\text{ }(\alpha)\text{ }$ of a weak base is$$\text{ 1}\text{.88}\times \text{1}{{\text{0}}^{\text{-2}}}$$. b) The $$\text{ pH }$$ of the weak base solution is equal to$\text{10}\text{.95}$. c) The ionisation constant of conjugate acid $${{\text{K}}_{\text{conjugate acid}}}$$ or weak base is equal to$$\text{5}\text{.65 }\times {{10}^{-10}}$$.** **Note:** According to the Lowry-Bronsted acid-base theory, the base dissociates into the solution and produces its corresponding conjugate acid. The base loses the hydroxide ion, the reaction is as shown below: $\begin{matrix} \text{BOH} & \text{+} & {{\text{H}}^{\text{+}}} & \rightleftharpoons & {{\text{B}}^{\text{+}}} & \text{+} & {{\text{H}}_{\text{2}}}\text{O} \\\ \text{(Base)} & {} & \text{(Acid)} & {} & \text{(Conjugate acid)} & {} & \text{(Conjugate base)} \\\ \end{matrix}$ Thus, the conjugate acid concentration can be obtained from the equilibrium constant.