Solveeit Logo

Question

Question: Calculate the binding energy per nucleon for \(_{10}^{20}Ne\), \(_{26}^{56}Fe\) and \(_{92}^{238}U\)...

Calculate the binding energy per nucleon for 1020Ne_{10}^{20}Ne, 2656Fe_{26}^{56}Fe and 92238U_{92}^{238}U. Given that mass of a neutron is1.008665amu1.008665amu, the mass of a proton is1.007825amu1.007825amu, the mass of 1020Ne_{10}^{20}Ne is 19.9924amu19.9924amu, the mass of 2656Fe_{26}^{56}Fe is 55.93492amu55.93492amu, 92238U_{92}^{238}U is 238.050783amu238.050783amu.

Explanation

Solution

Hint : In this question, we calculate binding energy per nucleon for1020Ne_{10}^{20}Ne, 2656Fe_{26}^{56}Fe and 92238U_{92}^{238}U. To calculate the binding energy we have to calculate mass defect first. After calculating mass defect we use this formula for the calculation of binding energy BE=Δmc2ABE=\dfrac{\Delta m{{c}^{2}}}{A}.

Complete step by step answer:
Given:
Mass of neutron=1.008665amuMass\text{ }of\text{ }neutron=1.008665amu
Mass of proton=1.007825amuMass\text{ }of\text{ }proton=1.007825amu
Mass of 1020Ne=19.9924amuMass\text{ }of~_{10}^{20}Ne=19.9924amu
Mass of2656Fe=55.93492amuMass\text{ }of_{26}^{56}Fe=55.93492amu
Mass of92238U=238.050783amuMass\text{ }of_{92}^{238}U=238.050783amu
We calculate mass defect for1020Ne_{10}^{20}Ne. The formula for the calculation of the mass defect is given as,
Δm=[10mp+(AZ)mn]+MNe\Delta m=\left[ 10{{m}_{p}}+(A-Z){{m}_{n}} \right]+{{M}_{Ne}}
Here
Δm=Mass defect\Delta m=\text{Mass defect}
mp=Mass of proton{{m}_{p}}=\text{Mass of proton}
mn=Mass of neutron{{m}_{n}}=\text{Mass of neutron}
MNe=Mass of 1020Ne{{M}_{Ne}}=\text{Mass of }_{10}^{20}\text{Ne}
Now put the value in the above equation,
Δm=[10×1.007825+10×1.008665]19.9924\Rightarrow \Delta m=[10\times 1.007825+10\times 1.008665]-19.9924
We simplify this equation
Δm=[10.07825+10.08665]19.9924\Rightarrow \Delta m=[10.07825+10.08665]-19.9924
On further solving
Δm=20.164919.9924\Rightarrow \Delta m=20.1649-19.9924
Mass defect we get
Δm=0.1725amu\Delta m=0.1725amu
Now we calculate Binding energy per nucleon,
BE=Δmc2ABE=\dfrac{\Delta m{{c}^{2}}}{A}
Here we put the values in the equation,
BE=0.1725c220=0.0086c2amu\Rightarrow BE=\dfrac{0.1725{{c}^{2}}}{20}=0.0086{{c}^{2}}amu
We change amuamu into MeVMeV. 1amu=931.5MeV/c21amu=931.5MeV/{{c}^{2}}
0.0086×931.5=8.03MeV\Rightarrow 0.0086\times 931.5=8.03MeV
We calculate mass defect for2656Fe_{26}^{56}Fe.
Δm=[26mp+(5626)mn]+MFe\Rightarrow \Delta m=[26{{m}_{p}}+(56-26){{m}_{n}}]+{{M}_{Fe}}
Now we put values in the equation
Δm=[26×1.007825+30×1.008665]55.93492\Rightarrow \Delta m=[26\times 1.007825+30\times 1.008665]-55.93492
After simplifying
Δm=[26.20345+30.25995]55.93492\Rightarrow \Delta m=[26.20345+30.25995]-55.93492
After further solving
Δm=56.463455.93492\Rightarrow \Delta m=56.4634-55.93492
Here we get the mass defect of Ferrus.
Δm=0.5285amu\Delta m=0.5285amu
Now we calculate Binding energy per nucleon,
BE=Δmc2ABE=\dfrac{\Delta m{{c}^{2}}}{A}
Here we put the values in the equation
BE=0.5285c256=0.0086c2amu\Rightarrow BE=\dfrac{0.5285{{c}^{2}}}{56}=0.0086{{c}^{2}}amu
We change amuamu into MeVMeV. 1amu=931.5MeV/c21amu=931.5MeV/{{c}^{2}}
0.0094×931.5=8.76MeV\Rightarrow 0.0094\times 931.5=8.76MeV
We calculate mass defect for92238U_{92}^{238}U.
Δm=[92mp+(23892)mn]+MU\Delta m=[92{{m}_{p}}+(238-92){{m}_{n}}]+{{M}_{U}}
Now we put the values in the equation
Δm=[92×1.007825+146×1.008665]238.050783\Delta m=[92\times 1.007825+146\times 1.008665]-238.050783
After simplifying
Δm=[92.7199+147.26509]238.050783\Delta m=[92.7199+147.26509]-238.050783
After further solving
Δm=239.98499238.050783\Delta m=239.98499-238.050783
Here we get the mass defect of Uranium.
Δm=1.934amu\Delta m=1.934amu
Now we calculate Binding energy per nucleon,
BE=Δmc2ABE=\dfrac{\Delta m{{c}^{2}}}{A}
Now we put the values in the equation,
BE=1.934c2238=0.0086c2amu\Rightarrow BE=\dfrac{1.934{{c}^{2}}}{238}=0.0086{{c}^{2}}amu
We change amuamu into MeVMeV. 1amu=931.5MeV/c21amu=931.5MeV/{{c}^{2}}
0.0081×931.5=7.57MeV\Rightarrow 0.0081\times 931.5=7.57MeV

Note: For calculation of binding energy of Uranium, Ferrum, Neon we have to find a defect in their mass after that we calculate binding energy per nucleon. To understand this type of question we have to study their mass and other properties uranium is a highly reacted element and it provides a high amount of heat when it starts reacting so these types of elements have many properties.