Solveeit Logo

Question

Question: Calculate the amount of \({\left( {N{H_4}} \right)_2}S{O_4}\) which must be added to \(500{\text{ ml...

Calculate the amount of (NH4)2SO4{\left( {N{H_4}} \right)_2}S{O_4} which must be added to 500 ml500{\text{ ml}} of 0.2 M NH30.2{\text{ M N}}{{\text{H}}_3} to yield a solution of pH = 9.35 , pKb (NH4OH) = 4.74pH{\text{ = 9}}{\text{.35 , p}}{{\text{K}}_{b{\text{ }}\left( {N{H_4}OH} \right)}}{\text{ = 4}}{\text{.74}} .

Explanation

Solution

By using the value of pHpH and pKbp{K_b} of NH3N{H_3} , find out the numbers of moles of NH4OHN{H_4}OH present in the solution .Then assuming the numbers of moles of NH4+N{H_4}^ + which is present in solution , calculate the moles of (NH4)SO4\left( {N{H_4}} \right)S{O_4} .
Formula used:
pOH = pKb - log [salt][base]pOH{\text{ = p}}{{\text{K}}_b}{\text{ - log }}\dfrac{{\left[ {salt} \right]}}{{\left[ {base} \right]}}

Complete answer:
Since the pHpH of given solution will be more than seven so its basic in nature .Therefore we have to do calculation with pOHpOH.Hence we will find pOHpOH firstly ,
As we know ,
pOH + pH = 14pOH{\text{ + pH = 14}}
pH = 9.35 (given)pH{\text{ = 9}}{\text{.35 }}\left( {given} \right)
Therefore , pOH = 14 - 9.35pOH{\text{ = 14 - 9}}{\text{.35}}
pOH = 4.65pOH{\text{ = 4}}{\text{.65}}
Now we have pOH = 4.65pOH{\text{ = 4}}{\text{.65}} and pKb = 4.74p{K_b}{\text{ = 4}}{\text{.74}} . Also we have a relation between them as,
pOH = pKb - log [salt][base]pOH{\text{ = p}}{{\text{K}}_b}{\text{ - log }}\dfrac{{\left[ {salt} \right]}}{{\left[ {base} \right]}}
Now put values here and find out the logarithmic ratio of salt and base. Therefore,
log [salt][base] = pKb - pOH\log {\text{ }}\dfrac{{\left[ {salt} \right]}}{{\left[ {base} \right]}}{\text{ = p}}{{\text{K}}_b}{\text{ - pOH}}
Substituting the given values,
log [salt][base] = 4.74 - 4.65\log {\text{ }}\dfrac{{\left[ {salt} \right]}}{{\left[ {base} \right]}}{\text{ = 4}}{\text{.74 - 4}}{\text{.65}}
log [salt][base] = 0.09\log {\text{ }}\dfrac{{\left[ {salt} \right]}}{{\left[ {base} \right]}}{\text{ = 0}}{\text{.09}} , here salt is NH4OHN{H_4}OH and base is NH4+N{H_4}^ + .
Therefore taking anti log both sides we get the ratio as ,
[NH4OH][NH4+] = 1.23\dfrac{{\left[ {N{H_4}OH} \right]}}{{\left[ {N{H_4}^ + } \right]}}{\text{ = 1}}{\text{.23}}
Since the molarity of the solution is given as 0.2 M0.2{\text{ M}} . Therefore ,
[NH4+] = 0.21.23 = 0.1626 M\left[ {N{H_4}^ + } \right]{\text{ = }}\dfrac{{0.2}}{{1.23}}{\text{ = 0}}{\text{.1626 M}}
Hence we can say that  0.1626 M{\text{ 0}}{\text{.1626 M}} of (NH4)2SO4{\left( {N{H_4}} \right)_2}S{O_4} is required for  0.2 M {\text{ 0}}{\text{.2 M }} of NH4OHN{H_4}OH . Therefore for  0.5 L or 500 ml {\text{ 0}}{\text{.5 L or 500 ml }} of NH4OHN{H_4}OH , the number of moles required is :
0.1626 M × 0.5 L = 0.081 moles0.1626{\text{ M }} \times {\text{ 0}}{\text{.5 L = 0}}{\text{.081 moles}}
The molecular weight of (NH4)2SO4{\left( {N{H_4}} \right)_2}S{O_4} is :
(14 + 1 × 4) × 2 + 32 + 16 × 4\left( {14{\text{ + 1 }} \times {\text{ 4}}} \right){\text{ }} \times {\text{ 2 + 32 + 16 }} \times {\text{ 4}}
132 g132{\text{ g}}
Therefore the weight required is moles multiply with molecular weight as:
0.018 × 132 g {\text{0}}{\text{.018 }} \times {\text{ }}132{\text{ g }}
10 g10{\text{ g}}
Hence 10 g10{\text{ g}} of (NH4)2SO4{\left( {N{H_4}} \right)_2}S{O_4} is required .

Note:
Since the value of pKbp{K_b} is given, we use that formula specifically. We can calculate the millimoles too if volume is taken in ml , since we use in litre we get moles to millimoles .While calculating the value of antilog make use of an anti log table. The theoretical molecular weight can be different with practical molecular weight but it is negotiable.