Solveeit Logo

Question

Question: Calculate \(\text{ }\Delta {{\text{S}}_{\text{rxn}}}\text{ }\) (in \(\text{ J/K }\) ) for the chemic...

Calculate  ΔSrxn \text{ }\Delta {{\text{S}}_{\text{rxn}}}\text{ } (in  J/K \text{ J/K } ) for the chemical reaction:  C(graphite) + 2H2(g)  CH4 (g) ΔH300o = 75.0 kJ \text{ C(graphite) + 2}{{\text{H}}_{\text{2}}}(g)\text{ }\to \text{ C}{{\text{H}}_{\text{4}}}\text{ }(g)\text{ }\Delta \text{H}_{\text{300}}^{\text{o}}\text{ = }-\text{75}\text{.0 kJ }
The standard entropies of C (graphite),  H2(g) \text{ }{{\text{H}}_{\text{2}}}(g)\text{ } and  CH4(g) \text{ C}{{\text{H}}_{\text{4}}}(g)\text{ } are  6.0 \text{ 6}\text{.0 } ,  130.6 \text{ 130}\text{.6 } and  186.2 J/K mol \text{ 186}\text{.2 J/K mol } respectively.
A) 169
B) 167
C) 170
D) 165

Explanation

Solution

The change in entropy  ΔSo \text{ }\Delta {{\text{S}}^{\text{o}}}\text{ }for a chemical reaction from the values of the entropy of the reactant and the product at  298 K \text{ 298 K } .for a general reaction given below,
 aA + bB + ............ lL + mM +............ \text{ }a\text{A + }b\text{B + }............\to \text{ }l\text{L + }m\text{M +}............\text{ }
The standard entropy change for the reaction is given by,
 !!Δ!! So = [lSLo+mSMo+..........][aSAobSBo+..........] \text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{S}}^{\text{o}}}\text{ = }\left[ l\text{S}_{\text{L}}^{\text{o}}\text{+}m\text{S}_{\text{M}}^{\text{o}}\text{+}.......... \right]-\left[ a\text{S}_{\text{A}}^{\text{o}}\text{+ }b\text{S}_{\text{B}}^{\text{o}}\text{+}.......... \right]\text{ }
Or it can be also written as,
 !!Δ!! So = Sproductso Sreactanto \text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{S}}^{\text{o}}}\text{ = }\sum{\text{S}_{\text{products}}^{\text{o}}}-\text{ }\sum{\text{S}_{\text{reactant}}^{\text{o}}}\text{ }
The entropy change of the surrounding is needed to be considered. It is equal to,
 ΔSsurrounding =  !!Δ!! HsysTsurrounding \text{ }\Delta {{\text{S}}_{\text{surrounding}}}\text{ = }\dfrac{-\text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{H}}_{sys}}}{{{\text{T}}_{surrounding}}}\text{ }

Complete step by step answer:
We are provided the following data: The graphite undergoes the hydrogenation reaction and forms the methane .reaction between the graphite and the hydrogen gas is as depicted below,
 C(graphite) + 2H2(g)  CH4 (g) \text{ C(graphite) + 2}{{\text{H}}_{\text{2}}}(g)\text{ }\to \text{ C}{{\text{H}}_{\text{4}}}\text{ }(g)\text{ }
Enthalpy of reaction at  300 K \text{ 300 K } is  ΔH300o = 75.0 kJ \text{ }\Delta \text{H}_{\text{300}}^{\text{o}}\text{ = }-\text{75}\text{.0 kJ }
Entropies for the:
C (graphite) is  SC(graphite)o = 6.0 JK1mol1 \text{ S}_{\text{C(graphite)}}^{\text{o}}\text{ = 6}\text{.0 J}{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}}\text{ }
Hydrogen gas is  SH2o = 130.6 JK1mol1 \text{ S}_{{{\text{H}}_{\text{2}}}}^{\text{o}}\text{ = 130}\text{.6 J}{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}}\text{ }
Methane gas is  SCH4o = 186.2 JK1mol1 \text{ S}_{\text{C}{{\text{H}}_{4}}}^{\text{o}}\text{ = 186}\text{.2 J}{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}}\text{ }
We are interested in calculating the change in entropy of a reaction. We will solve this problem in two parts.

Part A) standard entropy of chemical reaction: The reaction is as shown below,
 C(graphite) + 2H2(g)  CH4 (g) \text{ C(graphite) + 2}{{\text{H}}_{\text{2}}}(g)\text{ }\to \text{ C}{{\text{H}}_{\text{4}}}\text{ }(g)\text{ }
Let's first calculate the total standard entropy change for the reactant.
 Sreactanto = SC(graphite)o + 2SH2o \text{ }\sum{\text{S}_{\text{reactant}}^{\text{o}}}\text{ = S}_{\text{C(graphite)}}^{\text{o}}\text{ + 2S}_{{{\text{H}}_{\text{2}}}}^{\text{o}}\text{ }
Substitute the values .we have,
 Sreactanto = 6 + 2(130.6) = 267.2 JK1mol1 \text{ }\sum{\text{S}_{\text{reactant}}^{\text{o}}}\text{ = 6 + 2}\left( 130.6 \right)\text{ = 267}\text{.2 J}{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}}\text{ }
The reaction involves one product thus total entropy of the reaction is given as,
 !!Δ!! So =(186.2)(267.2) = 81 J K1mol1 \text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{S}}^{\text{o}}}\text{ =}\left( 186.2 \right)-(267.2)\text{ = }-81\text{ J }{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}}\text{ }
Part B) entropy change for surrounding: The heat of formation reaction or the enthalpy of formation of reaction is given as ΔH300o = 75.0 kJ \text{ }\Delta \text{H}_{\text{300}}^{\text{o}}\text{ = }-\text{75}\text{.0 kJ }at the  300 K \text{ 300 K } temperature. The entropy change of the surrounding from the enthalpy of reaction is calculated from the change in enthalpy at the absolute temperature. Thus entropy is,
 !!Δ!! Ssurr =  !!Δ!! HsysTsurr \text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{S}}_{surr}}\text{ = }\dfrac{-\text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{H}}_{sys}}}{{{\text{T}}_{\text{surr}}}}\text{ }
Substitute the values in the equation. We have,
 !!Δ!! Ssurr =  !!Δ!! HsysTsurr = 75 ×103 Jmol1 300 K = 250JK1mol1 \text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{S}}_{surr}}\text{ = }\dfrac{-\text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{H}}_{sys}}}{{{\text{T}}_{\text{surr}}}}\text{ }=\text{ }\dfrac{75\text{ }\times \text{1}{{\text{0}}^{\text{3}}}\text{ Jmo}{{\text{l}}^{-1}}\text{ }}{300\text{ K }}=\text{ }250\text{J}{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}}\text{ }
Therefore from part A) and B). The entropy change associated with the formation of the product is equal to the sum of the entropy of the reaction and the entropy of the surrounding. Thus entropy is,
 ΔSrxn = ΔS0 + ΔSsurr = (81 + 250 ) = 169 J K1mol1 \text{ }\Delta {{\text{S}}_{\text{rxn}}}\text{ = }\Delta {{\text{S}}^{\text{0}}}\text{ + }\Delta {{\text{S}}_{surr}}\text{ = }\left( -81\text{ + 250 } \right)\text{ }=\text{ 169 J }{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}}\text{ }
Thus the entropy change associated with the reaction is equal to  169 J K1mol1 \text{ 169 J }{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}}\text{ } .

Hence, (A) is the correct option.

Note: Not that, we have provided with the enthalpy of the formation of the reaction thus do not tempt to get the entropy directly from the   !!Δ!! HrxnT \text{ }\dfrac{\text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{H}}_{\text{rxn}}}}{\text{T}}\text{ } . This condition is true only at the equilibrium condition when the Gibbs free energy of the reaction is zero. But remember that  !!Δ!! Hrxn\text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{H}}_{\text{rxn}}} is important to find out the entropy change associated with the surrounding.