Solveeit Logo

Question

Question: Calculate \(\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ }.\)...

Calculate tan1.tan2.tan3.....................tan89.\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ }.

Explanation

Solution

In this question first try to convert like tan1.tan2.tan3........tan45...........tan(903).tan(902).tan(901)\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\tan ({90^\circ } - {3^\circ }).\tan ({90^\circ } - {2^\circ }).\tan ({90^\circ } - {1^\circ }) then use formula tan(90θ)=cotθ\tan ({90^\circ } - \theta ) = \cot \theta and tanθ.cotθ=1\tan \theta .\cot \theta = 1 from these we will proceed to the result .

Complete step-by-step answer:
So in this we have to find the value of tan1.tan2.tan3.....................tan89.\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ }.
we know that the tan(90θ)=cotθ\tan ({90^\circ } - \theta ) = \cot \theta So from this
tan1.tan2.tan3........tan45...........tan87.tan88.tan89.\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\tan {87^\circ }.\tan {88^\circ }.\tan {89^\circ }.
we can write it as
tan1.tan2.tan3........tan45...........tan(903).tan(902).tan(901)\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\tan ({90^\circ } - {3^\circ }).\tan ({90^\circ } - {2^\circ }).\tan ({90^\circ } - {1^\circ })
So from here tan(90θ)=cotθ\tan ({90^\circ } - \theta ) = \cot \theta hence ,
tan1.tan2.tan3........tan45...........cot3.cot2.cot1\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\cot {3^\circ }.\cot {2^\circ }.\cot {1^\circ }
Since we know that the tanθ.cotθ=1\tan \theta .\cot \theta = 1
Hence the term
tan1.cot1=1\tan {1^\circ }.\cot {1^\circ } = 1
tan2.cot2=1\tan {2^\circ }.\cot {2^\circ } = 1
tan3.cot3=1\tan {3^\circ }.\cot {3^\circ } = 1
.............
Similarly 4444 pairs are found and have value is equal to 11 one term is remaining that is tan45\tan {45^\circ }
we know that tan45=1\tan {45^\circ } = 1
tan1.tan2.tan3.cot3.cot2.cot1.........tan45\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.\cot {3^\circ }.\cot {2^\circ }.\cot {1^\circ }.........\tan {45^\circ }
On putting the values we get
1.1.1.........1...1.1.1.........1...
Hence it is equal to 11
The value of tan1.tan2.tan3.....................tan89=1\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ } = 1

Note: This question will be also framed like cot1.cot2.cot3.....................cot89\cot {1^\circ }.\cot {2^\circ }.\cot {3^\circ }.....................\cot {89^\circ } solve it as we solve above. The answer is also the same.In this two properties will use that is tanθ.cotθ=1\tan \theta .\cot \theta = 1 and cot(90θ)=tanθ\cot ({90^\circ } - \theta ) = \tan \theta .Students should remember the important trigonometric identities and formulas for solving these types of questions.