Solveeit Logo

Question

Question: Calculate standard internal energy change for $OF_{2(g)} + H_2O_{(g)} \rightarrow 2HF_{(g)} + O_{2(...

Calculate standard internal energy change for

OF2(g)+H2O(g)2HF(g)+O2(g)OF_{2(g)} + H_2O_{(g)} \rightarrow 2HF_{(g)} + O_{2(g)} at 300 K, if

ΔfH\Delta_fH^\circ of OF2(g)OF_{2(g)}, H2O(g)H_2O_{(g)} and HF(g)HF_{(g)} are 20, -250 and -270 kJ mol1mol^{-1} respectively.

[R = 8.314 J K1K^{-1} mol1mol^{-1}]

A

-307.50 kJ

B

-342.48 kJ

C

-412.00 kJ

D

-214.48 kJ

Answer

The closest answer is -307.50 kJ, but the calculated value is approximately -312.50 kJ.

Explanation

Solution

To calculate the standard internal energy change (ΔU\Delta U^\circ) for the given reaction:

  1. Calculate the standard enthalpy change (ΔH\Delta H^\circ) for the reaction:

    ΔH=ΔfH(products)ΔfH(reactants)\Delta H^\circ = \sum \Delta_fH^\circ(\text{products}) - \sum \Delta_fH^\circ(\text{reactants})

    Given:

    • ΔfH(OF2(g))=20kJ/mol\Delta_fH^\circ(OF_{2(g)}) = 20 \, \text{kJ/mol}
    • ΔfH(H2O(g))=250kJ/mol\Delta_fH^\circ(H_2O_{(g)}) = -250 \, \text{kJ/mol}
    • ΔfH(HF(g))=270kJ/mol\Delta_fH^\circ(HF_{(g)}) = -270 \, \text{kJ/mol}
    • ΔfH(O2(g))=0kJ/mol\Delta_fH^\circ(O_{2(g)}) = 0 \, \text{kJ/mol} (since it's an element in its standard state)

    ΔH=[2×(270)+0][20+(250)]=540(230)=310kJ\Delta H^\circ = [2 \times (-270) + 0] - [20 + (-250)] = -540 - (-230) = -310 \, \text{kJ}

  2. Relate ΔU\Delta U^\circ and ΔH\Delta H^\circ using the formula:

    ΔH=ΔU+ΔnRT\Delta H^\circ = \Delta U^\circ + \Delta n \, RT where:

    • Δn=\Delta n = (moles of gaseous products) - (moles of gaseous reactants)
    • R=8.314J/mol\cdotpK=0.008314kJ/mol\cdotpKR = 8.314 \, \text{J/mol·K} = 0.008314 \, \text{kJ/mol·K}
    • T=300KT = 300 \, \text{K}
  3. Calculate Δn\Delta n:

    Δn=(2molHF+1molO2)(1molOF2+1molH2O)=32=1\Delta n = (2 \, \text{mol} \, HF + 1 \, \text{mol} \, O_2) - (1 \, \text{mol} \, OF_2 + 1 \, \text{mol} \, H_2O) = 3 - 2 = 1

  4. Calculate ΔnRT\Delta n \, RT:

    ΔnRT=1×0.008314kJ/mol\cdotpK×300K=2.4942kJ\Delta n \, RT = 1 \times 0.008314 \, \text{kJ/mol·K} \times 300 \, \text{K} = 2.4942 \, \text{kJ}

  5. Calculate ΔU\Delta U^\circ:

    ΔU=ΔHΔnRT=310kJ2.4942kJ=312.4942kJ312.50kJ\Delta U^\circ = \Delta H^\circ - \Delta n \, RT = -310 \, \text{kJ} - 2.4942 \, \text{kJ} = -312.4942 \, \text{kJ} \approx -312.50 \, \text{kJ}

Therefore, the standard internal energy change for the reaction is approximately -312.50 kJ.