Solveeit Logo

Question

Question: calculate ph of 10^-3 M sodium phenoxide Ka for phenol is 0.6*10^-10 HOW DID YOU UNDERSTAND IT WAS S...

calculate ph of 10^-3 M sodium phenoxide Ka for phenol is 0.6*10^-10 HOW DID YOU UNDERSTAND IT WAS SALT HYDROLYSIS

Answer

10.52

Explanation

Solution

Understanding Salt Hydrolysis:

Sodium phenoxide (NaOC6H5NaOC_6H_5) is a salt. To determine if it undergoes hydrolysis, we identify the acid and base from which it is formed:

  1. Cation (Na+Na^+): Comes from Sodium Hydroxide (NaOH), which is a strong base.
  2. Anion (C6H5OC_6H_5O^-): Comes from Phenol (C6H5OHC_6H_5OH), which is a weak acid (indicated by its given KaK_a value of 0.6×10100.6 \times 10^{-10}, which is significantly less than 1).

Since sodium phenoxide is a salt of a weak acid and a strong base, its anion (C6H5OC_6H_5O^-) will react with water (hydrolyze) to produce hydroxide ions (OHOH^-), making the solution basic. This process is called salt hydrolysis.

Calculation of pH:

  1. Hydrolysis Reaction: The phenoxide ion (C6H5OC_6H_5O^-) reacts with water as follows: C6H5O(aq)+H2O(l)C6H5OH(aq)+OH(aq)C_6H_5O^-(aq) + H_2O(l) \rightleftharpoons C_6H_5OH(aq) + OH^-(aq)

  2. Hydrolysis Constant (KhK_h): For a salt of a weak acid and strong base, the hydrolysis constant (KhK_h) is related to the ionic product of water (KwK_w) and the dissociation constant of the weak acid (KaK_a) by the formula: Kh=KwKaK_h = \frac{K_w}{K_a} Given: Kw=1.0×1014K_w = 1.0 \times 10^{-14} (at 25°C), Ka=0.6×1010K_a = 0.6 \times 10^{-10} Kh=1.0×10140.6×1010=1.666...×104K_h = \frac{1.0 \times 10^{-14}}{0.6 \times 10^{-10}} = 1.666... \times 10^{-4}

  3. ICE Table for Hydrolysis: Let C be the initial concentration of sodium phenoxide, C=103C = 10^{-3} M. Let 'x' be the concentration of OHOH^- produced at equilibrium.

    SpeciesInitial (M)Change (M)Equilibrium (M)
    C6H5OC_6H_5O^-10310^{-3}x-x103x10^{-3} - x
    C6H5OHC_6H_5OH00+x+xxx
    OHOH^-00+x+xxx
  4. Equilibrium Expression: Kh=[C6H5OH][OH][C6H5O]K_h = \frac{[C_6H_5OH][OH^-]}{[C_6H_5O^-]} 1.666×104=xx103x=x2103x1.666 \times 10^{-4} = \frac{x \cdot x}{10^{-3} - x} = \frac{x^2}{10^{-3} - x}

  5. Solving for x (Concentration of OHOH^-): Rearrange the equation into a quadratic form: x2=1.666×104(103x)x^2 = 1.666 \times 10^{-4} (10^{-3} - x) x2=1.666×1071.666×104xx^2 = 1.666 \times 10^{-7} - 1.666 \times 10^{-4} x x2+1.666×104x1.666×107=0x^2 + 1.666 \times 10^{-4} x - 1.666 \times 10^{-7} = 0

    Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: Here, a=1a=1, b=1.666×104b=1.666 \times 10^{-4}, c=1.666×107c=-1.666 \times 10^{-7} x=(1.666×104)±(1.666×104)24(1)(1.666×107)2(1)x = \frac{-(1.666 \times 10^{-4}) \pm \sqrt{(1.666 \times 10^{-4})^2 - 4(1)(-1.666 \times 10^{-7})}}{2(1)} x=1.666×104±2.775556×108+6.664×1072x = \frac{-1.666 \times 10^{-4} \pm \sqrt{2.775556 \times 10^{-8} + 6.664 \times 10^{-7}}}{2} x=1.666×104±6.9415556×1072x = \frac{-1.666 \times 10^{-4} \pm \sqrt{6.9415556 \times 10^{-7}}}{2} x=1.666×104±8.3316×1042x = \frac{-1.666 \times 10^{-4} \pm 8.3316 \times 10^{-4}}{2}

    Since concentration (x) must be positive, we take the positive root: x=1.666×104+8.3316×1042=6.6656×1042x = \frac{-1.666 \times 10^{-4} + 8.3316 \times 10^{-4}}{2} = \frac{6.6656 \times 10^{-4}}{2} x=3.3328×104x = 3.3328 \times 10^{-4} M

    Therefore, [OH]=3.3328×104[OH^-] = 3.3328 \times 10^{-4} M.

  6. Calculate pOH: pOH=log[OH]pOH = -\log[OH^-] pOH=log(3.3328×104)pOH = -\log(3.3328 \times 10^{-4}) pOH=4log(3.3328)pOH = 4 - \log(3.3328) pOH40.5228=3.4772pOH \approx 4 - 0.5228 = 3.4772

  7. Calculate pH: At 25°C, pH+pOH=14pH + pOH = 14 pH=14pOHpH = 14 - pOH pH=143.4772pH = 14 - 3.4772 pH=10.5228pH = 10.5228

Rounding to two decimal places, the pH is 10.52.