Solveeit Logo

Question

Question: Calculate molarity and normality of 25% (w/v) \(N{{H}_{3}}\) solution:...

Calculate molarity and normality of 25% (w/v) NH3N{{H}_{3}} solution:

Explanation

Solution

Weight/volume (w/v) % of a component means the amount of the component dissolved in 100 mL of the solution. The expression used to calculate the percentage composition in w/v is
(w/v)(w/v)%=\dfrac{\text{mass of the component }}{\text{volume of the solution }}\times 100
Molarity (M) is the number of moles of a solute dissolved per litre of solution. It is given as
Molarity=mass of solute (in grams)molar mass×1000volume of solution (in mL)\text{Molarity}=\dfrac{\text{mass of solute (in grams)}}{\text{molar mass}}\times \dfrac{1000}{\text{volume of solution (in mL)}}
Relationship between normality and molarity is
Normality = Molarity !!×!! n factor\text{Normality = Molarity }\\!\\!\times\\!\\!\text{ n factor}

Complete answer:
25% of (w/v) NH3N{{H}_{3}} solution means that 25 g of NH3N{{H}_{3}} is dissolved in 100 mL of the solution.
To calculate molarity, we require molar mass of the component. So let us first calculate the molar mass of NH3N{{H}_{3}}.
Molar mass of NH3N{{H}_{3}} = 14 + 3 = 17gmol1mo{{l}^{-1}}
Given mass of NH3N{{H}_{3}}= 25 g
Volume of the solution containing 25 g of NH3N{{H}_{3}}= 100 mL
Substitute the above values in molarity expression, i.e.
Molarity=mass of solute (in grams)molar mass×1000volume of solution (in mL)\text{Molarity}=\dfrac{\text{mass of solute (in grams)}}{\text{molar mass}}\times \dfrac{1000}{\text{volume of solution (in mL)}}
We obtain the molarity in terms of mol L1{{L}^{-1}}.
Molarity=25g17gmol1×1000 mL L1100 mL Molarity=25017mol L1=14.7M  \begin{aligned} & Molarity=\dfrac{25g}{17g\,mo{{l}^{-1}}}\times \dfrac{1000\text{ }mL\text{ }{{L}^{-1}}}{100\text{ }mL} \\\ & Molarity=\dfrac{250}{17}mol\text{ }{{L}^{-1}}=14.7M \\\ & \\\ \end{aligned}
Therefore, the molarity of 25% (w/v) NH3N{{H}_{3}} solution is 14.7 M.
Let us now calculate the equivalent mass of NH3N{{H}_{3}}. Equivalent weight of a base is given as
Equivalent weight = Molar massAcidity\text{Equivalent weight = }\dfrac{\text{Molar mass}}{\text{Acidity}}
Acidity of base is equal to the number of displaceable hydroxide ion (OHO{{H}^{-}}) one molecule of the base can give. Consider the ionization of NH3N{{H}_{3}} in solution, i.e.
NH3+H2ONH4++OHN{{H}_{3}}+{{H}_{2}}O\to NH_{4}^{+}+O{{H}^{-}}
Therefore, NH3N{{H}_{3}} is a base with acidity equal to 1. Molar mass of NH3N{{H}_{3}} = 17gmol1mo{{l}^{-1}}
Therefore, equivalent mass of NH3N{{H}_{3}} will be = Molar massAcidity=17gmol11eqmol1=17geq1\dfrac{\text{Molar mass}}{\text{Acidity}}=\dfrac{17g\,mo{{l}^{-1}}}{1\,eq\,mo{{l}^{-1}}}=17g\,e{{q}^{-1}}
Normality and molarity of a solution are related by given relation
Normality = Molarity !!×!! n factor\text{Normality = Molarity }\\!\\!\times\\!\\!\text{ n factor}
Where n factor = molarmassequivalent mass\dfrac{\text{molar}\,\text{mass}}{\text{equivalent mass}} which is equal to acidity for a base. Therefore, normality of NH3N{{H}_{3}}will be equal to
Normality (N) = Molarity(M) !!×!! n factor N=14.7molL1×molarmassequivalent mass \begin{aligned} & \text{Normality (N) = Molarity(M) }\\!\\!\times\\!\\!\text{ n factor} \\\ & N=14.7mol\,{{L}^{-1}}\times \dfrac{\text{molar}\,\text{mass}}{\text{equivalent mass}} \\\ \end{aligned}
Substituting, molar mass of NH3N{{H}_{3}} = 17gmol1mo{{l}^{-1}}and equivalent mass of NH3N{{H}_{3}} = 17geq117g\,e{{q}^{-1}}, we get
N=14.7molL1×17gmol117geq1 N=14.7eqL1 \begin{aligned} & N=14.7mol\,{{L}^{-1}}\times \dfrac{17g\,mo{{l}^{-1}}}{17g\,e{{q}^{-1}}} \\\ & N=14.7eq\,{{L}^{-1}} \\\ \end{aligned}
Hence, molarity of 25% (w/v) NH3N{{H}_{3}} solution is 14.7mol L1{{L}^{-1}} or 14.7 M.
Normality of 25% (w/v) NH3N{{H}_{3}} solution is 14.7eq L1{{L}^{-1}} or 14.7 N.

Note:
Note that normality of a solution is never less than molarity of the solution. It can only be equal to or greater than the molarity of the solution. Normality is equal to the molarity of the solution when molar mass is equal to the equivalent mass of the solute.