Solveeit Logo

Question

Question: Calculate \[{\log _9}40\] if \[\log 15 = a\] and \[{\log _{20}}50 = b\]...

Calculate log940{\log _9}40 if log15=a\log 15 = a and log2050=b{\log _{20}}50 = b

Explanation

Solution

Here we will use the basic properties of the logarithmic operations to solve the log940{\log _9}40. So firstly we will find the value of log2&log3\log 2\& \log 3 in terms of a&ba\& b by solving the because by simplifying the log940{\log _9}40 term we will get the final equation in terms of log2&log3\log 2\& \log 3.

Complete step-by-step answer:
It is given that log15=a\log 15 = a.
Now we will find the value of log3\log 3 by solving the given equation log15=a\log 15 = a. Therefore by using the basic properties of the log function we get
log15=log(3×102)=log(3×10)log2=log3+log10log2=a\log 15 = \log \left( {\dfrac{{3 \times 10}}{2}} \right) = \log \left( {3 \times 10} \right) - \log 2 = \log 3 + \log 10 - \log 2 = a
We know that value of log10\log 10 is equals to 1. Therefore by solving the above equation, we get
log15=log3+1log2=a\Rightarrow \log 15 = \log 3 + 1 - \log 2 = a
log3=a+log21\Rightarrow \log 3 = a + \log 2 - 1…………………..(1)\left( 1 \right)
It is given that log2050=b{\log _{20}}50 = b.
Now we will find the value of log2\log 2 by solving the given equation log2050=b{\log _{20}}50 = b. Therefore by using the basic properties of the log function we get
log2050=log50log20=log(1002)log(2×10)=log100log2log2+log10=log102log2log2+log10=2log10log2log2+log10=b{\log _{20}}50 = \dfrac{{\log 50}}{{\log 20}} = \dfrac{{\log \left( {\dfrac{{100}}{2}} \right)}}{{\log \left( {2 \times 10} \right)}} = \dfrac{{\log 100 - \log 2}}{{\log 2 + \log 10}} = \dfrac{{\log {{10}^2} - \log 2}}{{\log 2 + \log 10}} = \dfrac{{2\log 10 - \log 2}}{{\log 2 + \log 10}} = b
2log10log2log2+log10=b\Rightarrow \dfrac{{2\log 10 - \log 2}}{{\log 2 + \log 10}} = b
We know that the value of log10\log 10 is equal to 1. Therefore by solving the above equation, we get
2×1log2log2+1=2log2log2+1=b\Rightarrow \dfrac{{2 \times 1 - \log 2}}{{\log 2 + 1}} = \dfrac{{2 - \log 2}}{{\log 2 + 1}} = b
2log2=b(log2+1)=blog2+b\Rightarrow 2 - \log 2 = b\left( {\log 2 + 1} \right) = b\log 2 + b
By solving this we will get the value of log2\log 2, we get
blog2+log2=2b\Rightarrow b\log 2 + \log 2 = 2 - b
log2×(1+b)=2b\Rightarrow \log 2 \times \left( {1 + b} \right) = 2 - b
log2=2b1+b\Rightarrow \log 2 = \dfrac{{2 - b}}{{1 + b}}…………………..(2)\left( 2 \right)
Now we will find the value of log940{\log _9}40. Therefore, we will simplify the main equation i.e. log940{\log _9}40, we get
log940=log40log9=log(22×10)log32=log22+log102log3=2log2+12log3\Rightarrow {\log _9}40 = \dfrac{{\log 40}}{{\log 9}} = \dfrac{{\log \left( {{2^2} \times 10} \right)}}{{\log {3^2}}} = \dfrac{{\log {2^2} + \log 10}}{{2\log 3}} = \dfrac{{2\log 2 + 1}}{{2\log 3}}
Now we will put the value of log2&log3\log 2\& \log 3 from the equation (1)\left( 1 \right) and equation (2)\left( 2 \right). Therefore, we get
log940=2log2+12log3=2(2b1+b)+12(a+log21)=2(2b1+b)+12(a+(2b1+b)1)=42b1+b+12a+42b1+b2=42b+(1+b)1+b2a(1+b)+42b2(1+b)1+b\Rightarrow {\log _9}40 = \dfrac{{2\log 2 + 1}}{{2\log 3}} = \dfrac{{2\left( {\dfrac{{2 - b}}{{1 + b}}} \right) + 1}}{{2\left( {a + \log 2 - 1} \right)}} = \dfrac{{2\left( {\dfrac{{2 - b}}{{1 + b}}} \right) + 1}}{{2\left( {a + \left( {\dfrac{{2 - b}}{{1 + b}}} \right) - 1} \right)}} = \dfrac{{\dfrac{{4 - 2b}}{{1 + b}} + 1}}{{2a + \dfrac{{4 - 2b}}{{1 + b}} - 2}} = \dfrac{{\dfrac{{4 - 2b + \left( {1 + b} \right)}}{{1 + b}}}}{{\dfrac{{2a\left( {1 + b} \right) + 4 - 2b - 2\left( {1 + b} \right)}}{{1 + b}}}}
Now we will simplify the above equation, we get
log940=42b+(1+b)1+b2a(1+b)+42b2(1+b)1+b=42b+(1+b)2a(1+b)+42b2(1+b)=5b2a+2ab+42b22b=5b2a+2ab+24b\Rightarrow {\log _9}40 = \dfrac{{\dfrac{{4 - 2b + \left( {1 + b} \right)}}{{1 + b}}}}{{\dfrac{{2a\left( {1 + b} \right) + 4 - 2b - 2\left( {1 + b} \right)}}{{1 + b}}}} = \dfrac{{4 - 2b + \left( {1 + b} \right)}}{{2a\left( {1 + b} \right) + 4 - 2b - 2\left( {1 + b} \right)}} = \dfrac{{5 - b}}{{2a + 2ab + 4 - 2b - 2 - 2b}} = \dfrac{{5 - b}}{{2a + 2ab + 2 - 4b}}
Hence, log940{\log _9}40 is equal to 5b2a+2ab+24b\dfrac{{5 - b}}{{2a + 2ab + 2 - 4b}}.

Note: We should know that the value inside the log function should never be zero or negative it should always be greater than zero. We should know that the value of the log10\log 10 is equal to 1. We should be simplifying the equation carefully and apply the properties of the log function accurately. We should also know the basic properties of the log functions.

\log a + \log b = \log ab\\\ \log a - \log b = \log \dfrac{a}{b}\\\ {\log _a}b = \dfrac{{\log b}}{{\log a}} \end{array}$$