Solveeit Logo

Question

Question: Calculate \[\int {\dfrac{{\sqrt {\cos 2x} }}{{\cos x}}} \,dx\]....

Calculate cos2xcosxdx\int {\dfrac{{\sqrt {\cos 2x} }}{{\cos x}}} \,dx.

Explanation

Solution

Here in this question we have to integrate the given function, since the function involves the trigonometric function. We use the trigonometric formulas which relate to the question and by substitution method whenever it is necessary we are solving the given function.

Complete step by step answer:
In an integration we come across two kinds of integral namely, definite integral and indefinite integral.Now consider the given question.
cos2xcosxdx\Rightarrow \int {\dfrac{{\sqrt {\cos 2x} }}{{\cos x}}} \,dx
This is an indefinite integral.
Taking the square root both numerator and denominator we have
cos2xcos2xdx\Rightarrow \int {\sqrt {\dfrac{{\cos 2x}}{{{{\cos }^2}x}}} } \,dx
By the double angle formula of trigonometry we have cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1
2cos2x1cos2xdx\Rightarrow \int {\sqrt {\dfrac{{2{{\cos }^2}x - 1}}{{{{\cos }^2}x}}} } \,dx
On simplifying we get
2sec2xdx\Rightarrow \int {\sqrt {2 - {{\sec }^2}x} } \,dx
By the trigonometric identity we know that 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x
2(1+tan2x)dx\Rightarrow \int {\sqrt {2 - (1 + {{\tan }^2}x)} } \,dx
On considering the sign conventions the above term is written as
21tan2xdx\Rightarrow \int {\sqrt {2 - 1 - {{\tan }^2}x} } \,dx
1tan2xdx\Rightarrow \int {\sqrt {1 - {{\tan }^2}x} } \,dx----(1)

Now substitute tanx=siny\tan x = \sin y----(2), on differentiating this we get sec2xdx=cosydy{\sec ^2}x\,dx = \cos y\,dy
dx=cosysec2xdy=cosy1+tan2xdy=cosy1+sin2ydy\Rightarrow dx = \dfrac{{\cos y}}{{{{\sec }^2}x}}\,dy = \dfrac{{\cos y}}{{1 + {{\tan }^2}x}}\,dy = \dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy ----(3)
On substituting the equation (2) and equation (3) in the equation (1) we have
1sin2y.cosy1+sin2ydy\Rightarrow \int {\sqrt {1 - {{\sin }^2}y} } \,.\dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy
By the trigonometric identity we know that 1sin2y=cosy\sqrt {1 - {{\sin }^2}y} = \cos y
cosy.cosy1+sin2ydy\Rightarrow \int {\cos y} \,.\dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy
cos2y1+sin2ydy\Rightarrow \int {\dfrac{{{{\cos }^2}y}}{{1 + {{\sin }^2}y}}\,dy}
In the numerator add 1 and subtract 1 we have
cos2y+111+sin2ydy\Rightarrow \int {\dfrac{{{{\cos }^2}y + 1 - 1}}{{1 + {{\sin }^2}y}}\,dy}
By the trigonometric identity we know that 1sin2y=cos2y1 - {\sin ^2}y = {\cos ^2}y
1sin2y+111+sin2ydy\Rightarrow \int {\dfrac{{1 - {{\sin }^2}y + 1 - 1}}{{1 + {{\sin }^2}y}}\,dy}

On simplifying the numerator term we have
21sin2y1+sin2ydy\Rightarrow \int {\dfrac{{2 - 1 - {{\sin }^2}y}}{{1 + {{\sin }^2}y}}\,dy}
2(1+sin2y)1+sin2ydy\Rightarrow \int {\dfrac{{2 - (1 + {{\sin }^2}y)}}{{1 + {{\sin }^2}y}}\,dy}
Taking the integral to each term
21+sin2ydy+(1+sin2y)1+sin2ydy\Rightarrow \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy} + \int {\dfrac{{ - (1 + {{\sin }^2}y)}}{{1 + {{\sin }^2}y}}} \,dy
21+sin2ydydy\Rightarrow \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy} - \int {dy}
On applying the integration to the second term
y+21+sin2ydy\Rightarrow - y + \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy}
By the trigonometric identity we know that sin2y+cos2y=1{\sin ^2}y + {\cos ^2}y = 1
y+2sin2y+cos2y+sin2ydy\Rightarrow - y + \int {\dfrac{2}{{{{\sin }^2}y + {{\cos }^2}y + {{\sin }^2}y}}\,dy}
y+22sin2y+cos2ydy\Rightarrow - y + \int {\dfrac{2}{{2{{\sin }^2}y + {{\cos }^2}y}}\,dy}
Multiply both the numerator and denominator term by sec2y{\sec ^2}y
y+2sec2y2sin2ysec2y+cos2ysec2ydy\Rightarrow - y + \int {\dfrac{{2{{\sec }^2}y}}{{2{{\sin }^2}y{{\sec }^2}y + {{\cos }^2}y{{\sec }^2}y}}\,dy}

By using the definition of trigonometric ratio we have
y+2sec2y2tan2y+1dy\Rightarrow - y + \int {\dfrac{{2{{\sec }^2}y}}{{2{{\tan }^2}y + 1}}\,dy}
y+2.2sec2y1+(2tany)dy\Rightarrow - y + \int {\dfrac{{\sqrt 2 .\sqrt 2 {{\sec }^2}y}}{{1 + \left( {\sqrt 2 \tan y} \right)}}\,dy}------(4)
Substitute 2tany=u\sqrt 2 \tan y = u----(5), on differentiating we have
2sec2ydy=du\Rightarrow \sqrt 2 {\sec ^2}y\,dy = du---(6)
On substituting the equation (6) and equation (5) in the equation (4)
y+2du1+u2\Rightarrow - y + \int {\dfrac{{\sqrt 2 \,du}}{{1 + {u^2}}}\,}
On applying the integration we get
y+2tan1(u)+c\Rightarrow - y + \sqrt 2 {\tan ^{ - 1}}(u) + c
On substituting the value of u we have
y+2tan1(2tany)+c\Rightarrow - y + \sqrt 2 {\tan ^{ - 1}}(2\tan y) + c
On substituting the value of y we get
sin1(tanx)+2tan1(2tansin1(tanx))+c\therefore - {\sin ^{ - 1}}(\tan x) + \sqrt 2 {\tan ^{ - 1}}(2\tan {\sin ^{ - 1}}(\tan x)) + c

Note: When we are integrating the function by substitution method, after applying the integration we have to substitute the value which was considered. On substituting the function will be in the simplest form where we can integrate easily. Sometimes we need to substitute the terms more than once where it is necessary.