Solveeit Logo

Question

Question: Calculate hydrolysis constant for 0.01 \[N\]solution of \[C{H_3}C{O_2}Na\]. \[\left( {{{\text{K}}_...

Calculate hydrolysis constant for 0.01 NNsolution of CH3CO2NaC{H_3}C{O_2}Na.
(Ka for CH3CO2H=1.810×105)\left( {{{\text{K}}_a}{\text{ }}for{\text{ }}C{H_3}C{O_2}H = 1.810 \times {{10}^{ - 5}}} \right)

Explanation

Solution

For sodium acetate (CH3CO2Na)\left( {C{H_3}C{O_2}Na} \right) molecular weight is equal to equivalent weight.
Hence normality is equal to molarity.
In generalized form, the hydrolysis constant can be described as: Ka=[H3O+]×[A][HA]{K_a} = \dfrac{{\left[ {{H_3}{O^ + }} \right] \times [{A^ - }]}}{{\left[ {HA} \right]}}
Where A{A^ - } represents any base, and HAHA represents any acid.

Step by step solution:
A hydrolysis constant is an equilibrium constant for a hydrolysis reaction.
The equivalent weight of an element or radical is equal to its atomic weight or formula weight divided by the valence it assumes in compounds:
equivalent weight=molecular weightvalenceequivalent{\text{ }}weight = \dfrac{{molecular{\text{ }}weight}}{{valence}}
The unit of equivalent weight is the atomic mass unit.
For sodium acetate (CH3CO2Na)\left( {C{H_3}C{O_2}Na} \right) equivalent weight is equal to molecular weight.
Next form the definition of normality and molarity
Normality=equivalent weight of solutevolume of solution in litreNormality = \dfrac{{equivalent{\text{ }}weight{\text{ }}of{\text{ }}solute}}{{volume{\text{ }}of{\text{ }}solution{\text{ }}in{\text{ }}litre}}
And Molarity=mass of solutevolume of solutionMolarity = \dfrac{{mass{\text{ }}of{\text{ }}solute}}{{volume{\text{ }}of{\text{ }}solution}}
If the equivalent weight is equal to molecular weight, the normality will also be equal to molarity.
So the concentration can be taken as 0.01 MM
Hydrolysis reaction of CH3CO2NaC{H_3}C{O_2}Na can be written as:
CH3COONa+H2OCH3COOH+Na++OHC{H_3}COONa + {H_2}O \to C{H_3}COOH + N{a^ + } + O{H^ - }
To calculate the pOHpOH of a solution we need to know the concentration of the hydroxide ion in moles per liter (molarity). The pOHpOH is then can be calculated using the expression:
pOH =   log [OH]pOH{\text{ }} = \; - {\text{ }}log{\text{ }}\left[ {O{H^ - }} \right]
So first we will calculate the value of Kb{{\text{K}}_b} using Ka{{\text{K}}_a} as:
Kw=Ka×Kb{{\text{K}}_w} = {{\text{K}}_a} \times {{\text{K}}_b}
On substituting the values
1×1014=1.81×105×Kb1 \times {10^{ - 14}} = 1.81 \times {10^{ - 5}} \times {K_b}
So, Kb=5.56×1010{K_b} = 5.56 \times {10^{ - 10}}
Next to find out OHO{H^ - } ions, we will use the formula of Kb{{\text{K}}_b} as:
Kb=[Na+][OH]CH3COONa{K_b} = \dfrac{{\left[ {N{a^ + }} \right]\left[ {O{H^ - }} \right]}}{{C{H_3}COONa}}
Now let the concentration of Na+N{a_ + } and OHO{H^ - } be xx
Now on substituting the values:

5.56×1010=[x]×[x](0.01x) 5.56×1010(0.01x)=x2 x25.56×1010x+5.56×1010  5.56 \times {10^{ - 10}} = \dfrac{{[x] \times [x]}}{{\left( {0.01 - x} \right)}} \\\ 5.56 \times {10^{ - 10}}\left( {0.01 - x} \right) = {x^2} \\\ {x^2} - 5.56 \times {10^{ - 10}}x + 5.56 \times {10^{ - 10}} \\\

After solving the quadratic equation:
x=2.3×106Mx = 2.3 \times {10^{ - 6}}M
Hence [Na+]=[OH]=2.3×106M\left[ {N{a^ + }} \right] = \left[ {O{H^ - }} \right] = 2.3 \times {10^{ - 6}}M
Now o find out the value of pOH:
On substituting the value of [OH]\left[ {O{H^ - }} \right]
pOH =   log (2.3×106)pOH{\text{ }} = \; - {\text{ }}log{\text{ }}\left( {2.3 \times {{10}^{ - 6}}} \right)
pOH=5.64pOH = 5.64
Now to find out pHpHwe will use the given formula:
pH=14pOH pH=145.6 pH=8.4  pH = 14 - pOH \\\ pH = 14 - 5.6 \\\ pH = 8.4 \\\

Note: If pKap{K_a}< pKbp{K_b}, pHpH of the solution will be less than 7 and the solution will be acidic.
IfpKap{K_a}= pKbp{K_b}, pHpH of the solution will be equal to 7 and the solution will be neutral.
And if pKap{K_a}> pKbp{K_b} pHpH of the solution will be more than 7 and the solution will be basic.