Question
Question: \[C_{1} + 2C_{2} + 3C_{3} + .....^{n}C_{n} =\]...
C1+2C2+3C3+.....nCn=
A
2n
B
n.2n
C
n.2n−1
D
n.2n+1
Answer
n.2n−1
Explanation
Solution
We know that, (1+x)n=C0+C1x+C2x2+......+Cnxn......(i)
Differentiating both sides w.r.t. x, we get n(1+x)n−1
= 0 + C1+2.C2x+3C3x2+.......+nCnxn−1
Putting x=1, we get, n.2n−1=C1+2C2+3C3+......+nCn.