Solveeit Logo

Question

Question: The two circles x²+y²+2ax+c=0 and x²+y²+2by+c=0 touch if $\frac{1}{a^2}+\frac{1}{b^2}=$...

The two circles x²+y²+2ax+c=0 and x²+y²+2by+c=0 touch if 1a2+1b2=\frac{1}{a^2}+\frac{1}{b^2}=

A

1/c

B

c

C

1/c²

D

Answer

1/c

Explanation

Solution

The equations of the two circles are given by: Circle 1: x2+y2+2ax+c=0x^2 + y^2 + 2ax + c = 0 Circle 2: x2+y2+2by+c=0x^2 + y^2 + 2by + c = 0

The center and radius of a circle with the equation x2+y2+2gx+2fy+d=0x^2 + y^2 + 2gx + 2fy + d = 0 are (g,f)(-g, -f) and g2+f2d\sqrt{g^2 + f^2 - d} respectively.

For Circle 1: Center C1=(a,0)C_1 = (-a, 0) Radius r1=a2cr_1 = \sqrt{a^2 - c}

For Circle 2: Center C2=(0,b)C_2 = (0, -b) Radius r2=b2cr_2 = \sqrt{b^2 - c}

The distance between the centers C1C_1 and C2C_2 is: d(C1,C2)=(0(a))2+(b0)2=a2+b2d(C_1, C_2) = \sqrt{(0 - (-a))^2 + (-b - 0)^2} = \sqrt{a^2 + b^2}

For the two circles to touch, the distance between their centers must be equal to the sum or the absolute difference of their radii: d(C1,C2)=r1+r2d(C_1, C_2) = r_1 + r_2 or d(C1,C2)=r1r2d(C_1, C_2) = |r_1 - r_2|

Squaring both sides: d(C1,C2)2=(r1±r2)2d(C_1, C_2)^2 = (r_1 \pm r_2)^2 a2+b2=(a2c±b2c)2a^2 + b^2 = (\sqrt{a^2 - c} \pm \sqrt{b^2 - c})^2 a2+b2=(a2c)+(b2c)±2(a2c)(b2c)a^2 + b^2 = (a^2 - c) + (b^2 - c) \pm 2\sqrt{(a^2 - c)(b^2 - c)} a2+b2=a2+b22c±2(a2c)(b2c)a^2 + b^2 = a^2 + b^2 - 2c \pm 2\sqrt{(a^2 - c)(b^2 - c)} 0=2c±2(a2c)(b2c)0 = -2c \pm 2\sqrt{(a^2 - c)(b^2 - c)} 2c=±2(a2c)(b2c)2c = \pm 2\sqrt{(a^2 - c)(b^2 - c)} c=±(a2c)(b2c)c = \pm \sqrt{(a^2 - c)(b^2 - c)}

Squaring both sides again: c2=(a2c)(b2c)c^2 = (a^2 - c)(b^2 - c) c2=a2b2a2cb2c+c2c^2 = a^2b^2 - a^2c - b^2c + c^2 0=a2b2a2cb2c0 = a^2b^2 - a^2c - b^2c a2c+b2c=a2b2a^2c + b^2c = a^2b^2

Divide by a2b2ca^2b^2c (assuming a,b,c0a, b, c \neq 0): a2ca2b2c+b2ca2b2c=a2b2a2b2c\frac{a^2c}{a^2b^2c} + \frac{b^2c}{a^2b^2c} = \frac{a^2b^2}{a^2b^2c} 1b2+1a2=1c\frac{1}{b^2} + \frac{1}{a^2} = \frac{1}{c}

Therefore, 1a2+1b2=1c\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}.