Solveeit Logo

Question

Question: Using Newton's backward difference formula, find y at x = 3.5 from following data:...

Using Newton's backward difference formula, find y at x = 3.5 from following data:

Answer

13.240625

Explanation

Solution

The given data points are:

x012345
y5.2810.412.41415.2

We need to find y at x = 3.5 using Newton's backward difference formula. The points are equally spaced with interval h=1h = 1. Since we are interpolating near the end of the table (x=3.5 is closer to x=5 than x=0), Newton's backward difference formula is suitable. The formula is:

y(x)=yn+pyn+p(p+1)2!2yn+p(p+1)(p+2)3!3yn+y(x) = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!} \nabla^3 y_n + \dots

where x=xn+phx = x_n + ph.

We take the last point as the reference point, so xn=5x_n = 5 and yn=y5=15.2y_n = y_5 = 15.2. We need to find y at x=3.5x = 3.5.

p=xxnh=3.551=1.5p = \frac{x - x_n}{h} = \frac{3.5 - 5}{1} = -1.5

Now, we construct the backward difference table:

xyy\nabla y2y\nabla^2 y3y\nabla^3 y4y\nabla^4 y5y\nabla^5 y
05.2
18.02.8
210.42.4-0.4
312.42.0-0.40
414.01.6-0.40.4
515.21.2-0.40-0.4

The backward differences at xn=x5=5x_n=x_5=5 are the last values in each column:

y5=15.2y_5 = 15.2 y5=1.2\nabla y_5 = 1.2 2y5=0.4\nabla^2 y_5 = -0.4 3y5=0\nabla^3 y_5 = 0 4y5=0.4\nabla^4 y_5 = -0.4 5y5=0\nabla^5 y_5 = 0

Substitute these values and p=1.5p = -1.5 into Newton's backward difference formula:

y(3.5)=y5+py5+p(p+1)2!2y5+p(p+1)(p+2)3!3y5+p(p+1)(p+2)(p+3)4!4y5+y(3.5) = y_5 + p \nabla y_5 + \frac{p(p+1)}{2!} \nabla^2 y_5 + \frac{p(p+1)(p+2)}{3!} \nabla^3 y_5 + \frac{p(p+1)(p+2)(p+3)}{4!} \nabla^4 y_5 + \dots

y(3.5)=15.2+(1.5)(1.2)+(1.5)(1.5+1)2(0.4)+(1.5)(1.5+1)(1.5+2)6(0)+(1.5)(1.5+1)(1.5+2)(1.5+3)24(0.4)+y(3.5) = 15.2 + (-1.5)(1.2) + \frac{(-1.5)(-1.5+1)}{2} (-0.4) + \frac{(-1.5)(-1.5+1)(-1.5+2)}{6} (0) + \frac{(-1.5)(-1.5+1)(-1.5+2)(-1.5+3)}{24} (-0.4) + \dots

y(3.5)=15.2+(1.5)(1.2)+(1.5)(0.5)2(0.4)+0+(1.5)(0.5)(0.5)(1.5)24(0.4)+y(3.5) = 15.2 + (-1.5)(1.2) + \frac{(-1.5)(-0.5)}{2} (-0.4) + 0 + \frac{(-1.5)(-0.5)(0.5)(1.5)}{24} (-0.4) + \dots

y(3.5)=15.21.8+0.752(0.4)+0.562524(0.4)+y(3.5) = 15.2 - 1.8 + \frac{0.75}{2} (-0.4) + \frac{0.5625}{24} (-0.4) + \dots

y(3.5)=15.21.8+0.375(0.4)+0.0234375(0.4)+y(3.5) = 15.2 - 1.8 + 0.375 (-0.4) + 0.0234375 (-0.4) + \dots

y(3.5)=15.21.80.150.009375+y(3.5) = 15.2 - 1.8 - 0.15 - 0.009375 + \dots

y(3.5)=13.40.150.009375y(3.5) = 13.4 - 0.15 - 0.009375

y(3.5)=13.250.009375y(3.5) = 13.25 - 0.009375

y(3.5)=13.240625y(3.5) = 13.240625