Solveeit Logo

Question

Question: C the centre of the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}\) = 1. The tangents at any...

C the centre of the hyperbola x2a2y2b2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1. The tangents at any point P on this hyperbola meets the straight lines bx – ay = 0 and bx + ay = 0 in the points Q and R respectively. Then CQ. CR =

A

a2 + b2

B

a2 – b2

C

1a2+1b2\frac{1}{a^{2}} + \frac{1}{b^{2}}

D

1a21b2\frac{1}{a^{2}} - \frac{1}{b^{2}}

Answer

a2 + b2

Explanation

Solution

P is (a sec θ, b tan θ)

Tangent t at P is xsecθaytanθb\frac{x\sec\theta}{a} - \frac{y\tan\theta}{b} = 1

It meets bx – ay = 0 i.e., xa=yb\frac{x}{a} = \frac{y}{b}in Q

∴ Q is (asecθtanθ,bsecθtanθ)\left( \frac{a}{\sec\theta - \tan\theta},\frac{- b}{\sec\theta - \tan\theta} \right)

It meets bx + ay = 0 i.e., xa=yb\frac{x}{a} = - \frac{y}{b} in R.

∴ R is (asecθ+tanθ,bsecθ+tanθ)\left( \frac{a}{\sec\theta + \tan\theta},\frac{- b}{\sec\theta + \tan\theta} \right)

∴ CQ .CR = a2+b2(secθtanθ).a2+b2(secθ+tanθ)\frac{\sqrt{a^{2} + b^{2}}}{\left( \sec\theta - \tan\theta \right)}.\frac{\sqrt{a^{2} + b^{2}}}{\left( \sec\theta + \tan\theta \right)}

= a2 + b2, {\because sec2 θ tan2 θ= 1}